摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4,5-dibromo-4',5'-bis(2'-cyanoethylsulfanyl)tetrathiafulvalene | 209334-76-9

中文名称
——
中文别名
——
英文名称
4,5-dibromo-4',5'-bis(2'-cyanoethylsulfanyl)tetrathiafulvalene
英文别名
4,5-Dibromo-4',5'-bis(2'-cyanoethylsulfanyl)-tetrathiafulvalene;3-[[5-(2-cyanoethylsulfanyl)-2-(4,5-dibromo-1,3-dithiol-2-ylidene)-1,3-dithiol-4-yl]sulfanyl]propanenitrile
4,5-dibromo-4',5'-bis(2'-cyanoethylsulfanyl)tetrathiafulvalene化学式
CAS
209334-76-9
化学式
C12H8Br2N2S6
mdl
——
分子量
532.413
InChiKey
MRUILTFTQIMNSA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.1
  • 重原子数:
    22
  • 可旋转键数:
    6
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    199
  • 氢给体数:
    0
  • 氢受体数:
    8

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4,5-dibromo-4',5'-bis(2'-cyanoethylsulfanyl)tetrathiafulvalenecesium hydroxide 作用下, 以 四氢呋喃甲醇 为溶剂, 反应 0.5h, 生成 4',5'-Dibromo-[2,2']bi[[1,3]dithiolylidene]-4,5-dithiol
    参考文献:
    名称:
    Synthesis and crystal engineering of new halogenated tetrathiafulvalene (TTF) derivatives and their charge transfer complexes and radical ion salts
    摘要:
    报道了四碘四硫富瓦烯的高效合成方法,4-碘-5-甲基-4′,5′-双(甲基硫巴)TTF 3,以及4-碘-4′,5′-双(甲基硫巴)TTF 4,该方法通过用全氟己基碘对相应TTF体系的锂化衍生物进行碘化反应。使用1,2-二溴四氟乙烷和六氯乙烷对锂三甲基TTF进行溴化和氯化,分别得到了4-溴-和4-氯-4′,5,5′-三甲基TTF 6和7。由磷酸酯诱导的4-碘-1,3-二噁烯-2-硫酮或4,5-二碘-1,3-二噁烯-2-硫酮(一个)半单元的自偶联或交叉偶联反应导致TTF衍生物伴有部分碘取代基的损失。通过交叉偶联方法合成了4,5-二溴-4′,5′-双(氰乙基硫巴)TTF 15,并通过与氢氧化铯和随后与碘甲烷的反应转化为4,5-二溴-4′,5′-双(甲基硫巴)TTF 16。报告了为电化学生成的三甲基TTF衍生物(X = I, Br和Cl)的阳离子自由基进行的电子顺磁共振(EPR)数据。对于中性给体,报告了2、5、6、四甲基TTF 8和15的X射线晶体结构。结构2的特征在于具有特别密集的堆积形态,形成连续的堆叠内I⋯I接触(4.17–4.19 Å)。6和8的晶体是同构的,而5的结构则不同。由于特定相互作用的差异,而不是I和Br相似的立体要求,使得5中的碘取代基影响了堆积,而6中的溴取代基则没有。结构15由面对面二聚体组成,具有二聚体间的Br⋯Br(3.57 Å)和Br⋯S(3.55 Å)接触:观察到Br和S取代的二噁烯环之间的键长距离存在显著差异。1:1电荷转移(CT)复合物3·TCNQ和4·TCNQ(TCNQ = 7,7,8,8-四氰基-p-奎诺二甲烷,17)显示出交替的D和A基团的混合阶梯状堆叠:通过键长分析估计的CT整体程度分别为0.2 e和0.3 e。在3·TCNQ中,无序的碘原子在某个位置与一个氰基之间有一个短的(堆叠间,但层内)接触(I⋯N距离为3.14和3.18 Å)。在4·TCNQ中,类似的I⋯N接触则较长(3.35 Å)。在结构5+·I3−·½I2中,阳离子自由基无序;二聚阳离子自由基显示短的二聚内接触(S⋯S 3.38–3.39 Å, C⋯C 3.35 Å),与电子耦合一致。每个二聚体周围都有四个I3−阴离子。16+·I3−的晶体结构由层组成,层间距离为3.55 Å。一个层的阳离子与下一个层的阴离子重叠,堆积可描述为沿a轴的混合堆叠。这种1:1化学计量比体系的盐具有显著高的导电性(σrt = 8 × 10−2 S cm−1),归因于部分电荷转移(通过键长分析估计TTF基团的电荷为+⅔)和一种连续的短非键接触体系。
    DOI:
    10.1039/b101866n
  • 作为产物:
    描述:
    4,5-双(2-氰乙基硫代)-1,2-二硫醇-2-酮 、 4,5-dibromo-1,3-dithiole-2-thione 在 亚磷酸三乙酯 作用下, 反应 4.5h, 以38%的产率得到4,5-dibromo-4',5'-bis(2'-cyanoethylsulfanyl)tetrathiafulvalene
    参考文献:
    名称:
    Synthesis and crystal engineering of new halogenated tetrathiafulvalene (TTF) derivatives and their charge transfer complexes and radical ion salts
    摘要:
    报道了四碘四硫富瓦烯的高效合成方法,4-碘-5-甲基-4′,5′-双(甲基硫巴)TTF 3,以及4-碘-4′,5′-双(甲基硫巴)TTF 4,该方法通过用全氟己基碘对相应TTF体系的锂化衍生物进行碘化反应。使用1,2-二溴四氟乙烷和六氯乙烷对锂三甲基TTF进行溴化和氯化,分别得到了4-溴-和4-氯-4′,5,5′-三甲基TTF 6和7。由磷酸酯诱导的4-碘-1,3-二噁烯-2-硫酮或4,5-二碘-1,3-二噁烯-2-硫酮(一个)半单元的自偶联或交叉偶联反应导致TTF衍生物伴有部分碘取代基的损失。通过交叉偶联方法合成了4,5-二溴-4′,5′-双(氰乙基硫巴)TTF 15,并通过与氢氧化铯和随后与碘甲烷的反应转化为4,5-二溴-4′,5′-双(甲基硫巴)TTF 16。报告了为电化学生成的三甲基TTF衍生物(X = I, Br和Cl)的阳离子自由基进行的电子顺磁共振(EPR)数据。对于中性给体,报告了2、5、6、四甲基TTF 8和15的X射线晶体结构。结构2的特征在于具有特别密集的堆积形态,形成连续的堆叠内I⋯I接触(4.17–4.19 Å)。6和8的晶体是同构的,而5的结构则不同。由于特定相互作用的差异,而不是I和Br相似的立体要求,使得5中的碘取代基影响了堆积,而6中的溴取代基则没有。结构15由面对面二聚体组成,具有二聚体间的Br⋯Br(3.57 Å)和Br⋯S(3.55 Å)接触:观察到Br和S取代的二噁烯环之间的键长距离存在显著差异。1:1电荷转移(CT)复合物3·TCNQ和4·TCNQ(TCNQ = 7,7,8,8-四氰基-p-奎诺二甲烷,17)显示出交替的D和A基团的混合阶梯状堆叠:通过键长分析估计的CT整体程度分别为0.2 e和0.3 e。在3·TCNQ中,无序的碘原子在某个位置与一个氰基之间有一个短的(堆叠间,但层内)接触(I⋯N距离为3.14和3.18 Å)。在4·TCNQ中,类似的I⋯N接触则较长(3.35 Å)。在结构5+·I3−·½I2中,阳离子自由基无序;二聚阳离子自由基显示短的二聚内接触(S⋯S 3.38–3.39 Å, C⋯C 3.35 Å),与电子耦合一致。每个二聚体周围都有四个I3−阴离子。16+·I3−的晶体结构由层组成,层间距离为3.55 Å。一个层的阳离子与下一个层的阴离子重叠,堆积可描述为沿a轴的混合堆叠。这种1:1化学计量比体系的盐具有显著高的导电性(σrt = 8 × 10−2 S cm−1),归因于部分电荷转移(通过键长分析估计TTF基团的电荷为+⅔)和一种连续的短非键接触体系。
    DOI:
    10.1039/b101866n
点击查看最新优质反应信息

文献信息

  • Synthesis and crystal engineering of new halogenated tetrathiafulvalene (TTF) derivatives and their charge transfer complexes and radical ion salts
    作者:Andrei S. Batsanov、Martin R. Bryce、Antony Chesney、Judith A. K. Howard、Derek E. John、Adrian J. Moore、Clare L. Wood、Hagit Gershtenman、James Y. Becker、Vladimir Y. Khodorkovsky、Arkady Ellern、Joel Bernstein、Igor F. Perepichka、Vincent Rotello、Mark Gray、Alejandro O. Cuello
    DOI:10.1039/b101866n
    日期:——
    Efficient syntheses are reported for tetraiodotetrathiafulvalene 2, 4-iodo-5-methyl-4′,5′-bis(methylsulfanyl)TTF 3, and 4-iodo-4′,5′-bis(methylsulfanyl)TTF 4 by iodination, using perfluorohexyl iodide, of lithiated derivatives of the corresponding TTF system. Bromination and chlorination of lithiotrimethylTTF using 1,2-dibromotetrafluoroethane and hexachloroethane gave 4-bromo- and 4-chloro-4′,5,5′-trimethylTTF 6 and 7, respectively. Phosphite-induced self-coupling or cross-coupling reactions of 4-iodo-1,3-dithiole-2-thione or 4,5-diiodo-1,3-dithiole-2-thione(one) half-units resulted in TTF derivatives with partial loss of the iodine substituent(s). 4,5-Dibromo-4′,5′-bis(cyanoethylsulfanyl)TTF 15 was prepared by cross-coupling methodology, and converted into 4,5-dibromo-4′,5′-bis(methylsulfanyl)TTF 16 by reaction with caesium hydroxide and then methyl iodide. EPR data are reported for the electrochemically generated cation radicals of trimethylTTFX derivatives (X = I, Br and Cl) 5–7, respectively. For the neutral donors, the X-ray crystal structures are reported for 2, 5, 6, tetramethylTTF 8 and 15. Structure 2 is characterised by a particularly dense packing with continuous chains of intra-stack I⋯I contacts (4.17–4.19 Å). The crystals of 6 and 8 are isomorphous, while the structure of 5 is different. The iodo-substituent in 5 affects the packing in a way the bromo-substituent in 6 does not, due to differences in specific interactions rather than steric demands of I and Br, which are similar. Structure 15 comprises face-to-face dimers with inter-dimer Br⋯Br (3.57 Å) and Br⋯S (3.55 Å) contacts: a remarkable difference in bond distances between the Br and S-substituted dithiole rings is observed. The 1 ∶ 1 charge-transfer (CT) complexes 3·TCNQ and 4·TCNQ (TCNQ = 7,7,8,8-tetracyano-p-quinodimethane, 17) display mixed stair-like stacks of alternating D and A moieties: the overall degree of CT is estimated from bond length analysis to be 0.2 e and 0.3 e, respectively. In 3·TCNQ either position of the disordered iodine atom has one short (inter-stack, but intra-layer) contact with a cyano group (I⋯N distances of 3.14 and 3.18 Å). In 4·TCNQ a similar I⋯N contact is much longer (3.35 Å). In the structure of 5+·I3−·½I2 the cation radical is disordered; dimeric cation radicals display short intra-dimer contacts (S⋯S 3.38–3.39 Å, C⋯C 3.35 Å) consistent with electron coupling. Each dimer is surrounded by four I3− anions. The crystal structure of 16+·I3− is comprised of layers with interplanar separations of 3.55 Å. Cations of one layer overlap with anions of the next, and the packing can be described as mixed stacks parallel to the a axis. The remarkably high conductivity of this salt for a system of 1 ∶ 1 stoichiometry (σrt = 8 × 10−2 S cm−1) is ascribed to partial charge transfer (the charge on the TTF moiety is estimated as +⅔ from bond length analysis) and a continuous system of short non-bonding contacts.
    报道了四碘四硫富瓦烯的高效合成方法,4-碘-5-甲基-4′,5′-双(甲基硫巴)TTF 3,以及4-碘-4′,5′-双(甲基硫巴)TTF 4,该方法通过用全氟己基碘对相应TTF体系的锂化衍生物进行碘化反应。使用1,2-二溴四氟乙烷和六氯乙烷对锂三甲基TTF进行溴化和氯化,分别得到了4-溴-和4-氯-4′,5,5′-三甲基TTF 6和7。由磷酸酯诱导的4-碘-1,3-二噁烯-2-硫酮或4,5-二碘-1,3-二噁烯-2-硫酮(一个)半单元的自偶联或交叉偶联反应导致TTF衍生物伴有部分碘取代基的损失。通过交叉偶联方法合成了4,5-二溴-4′,5′-双(氰乙基硫巴)TTF 15,并通过与氢氧化铯和随后与碘甲烷的反应转化为4,5-二溴-4′,5′-双(甲基硫巴)TTF 16。报告了为电化学生成的三甲基TTF衍生物(X = I, Br和Cl)的阳离子自由基进行的电子顺磁共振(EPR)数据。对于中性给体,报告了2、5、6、四甲基TTF 8和15的X射线晶体结构。结构2的特征在于具有特别密集的堆积形态,形成连续的堆叠内I⋯I接触(4.17–4.19 Å)。6和8的晶体是同构的,而5的结构则不同。由于特定相互作用的差异,而不是I和Br相似的立体要求,使得5中的碘取代基影响了堆积,而6中的溴取代基则没有。结构15由面对面二聚体组成,具有二聚体间的Br⋯Br(3.57 Å)和Br⋯S(3.55 Å)接触:观察到Br和S取代的二噁烯环之间的键长距离存在显著差异。1:1电荷转移(CT)复合物3·TCNQ和4·TCNQ(TCNQ = 7,7,8,8-四氰基-p-奎诺二甲烷,17)显示出交替的D和A基团的混合阶梯状堆叠:通过键长分析估计的CT整体程度分别为0.2 e和0.3 e。在3·TCNQ中,无序的碘原子在某个位置与一个氰基之间有一个短的(堆叠间,但层内)接触(I⋯N距离为3.14和3.18 Å)。在4·TCNQ中,类似的I⋯N接触则较长(3.35 Å)。在结构5+·I3−·½I2中,阳离子自由基无序;二聚阳离子自由基显示短的二聚内接触(S⋯S 3.38–3.39 Å, C⋯C 3.35 Å),与电子耦合一致。每个二聚体周围都有四个I3−阴离子。16+·I3−的晶体结构由层组成,层间距离为3.55 Å。一个层的阳离子与下一个层的阴离子重叠,堆积可描述为沿a轴的混合堆叠。这种1:1化学计量比体系的盐具有显著高的导电性(σrt = 8 × 10−2 S cm−1),归因于部分电荷转移(通过键长分析估计TTF基团的电荷为+⅔)和一种连续的短非键接触体系。
  • Efficient synthesis of brominated tetrathiafulvalene (TTF) derivatives: solid-state structure and electrochemical behaviour
    作者:Antonio Alberola、Rebecca J. Collis、Felipe García、Ruth E. Howard
    DOI:10.1016/j.tet.2006.06.006
    日期:2006.8
    An efficient synthesis is reported for 4,5-dibromo-[1,3]dithiole-2-thione (1) and 4-bromo-1,3-dithiole-2-thione (7) by bromination of lithiated vinylene trithiocarbonate. Compound 1 acts as a convenient precursor to a number of asymmetric electron donors. This is exemplified by the formation of 4,5-dibromo-4′,5′-bis(2′-cyanoethylsulfanyl)TTF (3) by cross-coupling methodology and subsequent conversion
    据报道,通过溴化锂化的亚乙烯基三硫代碳酸酯可以有效合成4,5-二溴-[1,3]二硫代-2-硫酮(1)和4-溴-1,3-二硫代-2-硫酮(7)。化合物1充当许多不对称电子供体的便利前体。这通过交叉偶联方法形成4,5-二溴-4',5'-双(2'-氰基乙基硫基)TTF(3)并随后转化为4,5-二溴-4',5'来举例说明-乙烯二硫代TTF(4)通过与氢氧化铯和1,2-二溴乙烷反应。新的供体4,5-二溴4',5'-亚乙基二硫代二硒二氮富瓦烯(5)是通过将1和4,5-亚乙基二硫-1,3-二硒酚-2-一(6)。报告了3和5的X射线结构。
查看更多

同类化合物

四硫杂富瓦烯-D4 四硫富瓦烯 四(戊硫代)四硫富瓦烯 四(十八烷基硫代)四硫富瓦烯 四(乙硫基)四硫富瓦烯[有机电子材料] 双(亚乙基二硫醇)四硫代富瓦烯 双(三亚甲基二硫代)四硫富瓦烯 [1,3]二噻唑并[4,5-d]-1,3-二噻唑,2,5-二(1,3-二硫醇-2-亚基)- 5-甲基二硫杂环戊烯-3-硫酮 5-氨基-3-硫代氧基-3H-(1,2)二硫杂环戊烯-4-羧酸乙酯 5-氨基-3-硫代氧基-3H-(1,2)二硫杂环戊烯-4-甲腈 5,6-二氢-4H-环戊并[1,2]二硫代-3-硫酮 4,4’,5-三甲基四硫富瓦烯 4-甲基二硫杂环戊烯-3-硫酮 4-新戊基-3H-1,2-二硫杂环戊烯-3-硫酮 4,5-二甲基-3H-1,2-二硫醇-3-酮 4,5,6,7-四氢苯并[1,2]二硫-3-硫酮 4,4’-二甲基连四硫富瓦烯 4,4,5,5,6,6,7,7-八氢二苯并四硫富瓦烯 3H-1,2-二硫杂环戊二烯-3-酮 3H-1,2-二硫杂环戊二烯-3-硫酮 2-(4,5-二甲基-1,3-二硫杂环戊烯-2-亚基)-4,5-二甲基-1,3-二硫杂环戊烯 2,3,6,7-四(2-氰乙基硫代)四硫富瓦烯 1,3-二噻唑,2-[4,5-二(癸基硫代)-1,3-二硫醇-2-亚基]-4,5-二(癸基硫代)- (四甲基硫)四硫富瓦烯 2,3,6,7-tetrakis[2-(2-methoxyethoxy)ethylsulfanyl]tetrathiafulvalene 2,3-bis[2-(2-methoxyethoxy)ethylsulfanyl]-6,7-bis(methylsulfanyl)tetrathiafulvalene (5S,6S,5'S,6'S)-5,5',6,6'-tetramethyl-bis(ethylenedithio)tetrathiafulvalene 2,5-bis(4,5-ethylenedithio-1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene 2,3,6,7-Tetrakis(1-octyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-dodecyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-pentyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-hexyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-propoxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-decyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-heptyloxymethyl)tetrathiafulvalene 2,6-bis(thioacetopentadecylamido)-3,7-bis(methylthiotetrathiafulvalene) 2,7-bis(thioacetopentadecylamido)-3,6-bis(methylthiotetrathiafulvalene) ethane 1,2-dithiol 2,3,6,7-Tetrakis(1-tetradecyloxymethyl)tetrathiafulvalene 2-Isopropyliden-1,3-dithiol-4,5-dicarbonitril 4,5-bis(butylthio)tetrathiafulvalene 2,3-dicyano-6,7-bis(butylthio)tetrathiafulvalene Tetrabutylammonium-(3-thioxo-3H-1,2-dithiol-5-thiolat) 5,6-dihydro-5-dimethoxymethyl-2-(5',6'-dihydro-1,3-dithiolo[4,5-b]-1,4-dithiin-2'-ylidene)-1,3-dithiolo[4,5-b]-1,4-dithiin 3H-1,2-dithiole 2,2'-(But-2-en-1,4-diyliden)bis[1,3-dithiol-4,5-dicarbonitril] 3-methylsulfanyl-[1,2]dithiolylium; iodide 2,2'-(Dodeca-2,4,6,8,10-pentaen-1,12-diyliden)bis[1,3-dithiol-4,5-dicarbonitril] (E,E)-1,6-bis[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene]hexa-2,4-diene