Optimization of the Sensitization Process and Stability of Octadentate Eu(III) 1,2-HOPO Complexes
摘要:
The synthesis of a series of octadentate ligands containing the 1-hydroxypyridin-2-one (1,2-HOPO) group in complex with europium(III) is reported. Within this series, the central bridge connecting two diethylenetriamine units linked to two 1,2-HOPO chromophores at the extremities (5-LIN-1,2-HOPO) is varied from a short ethylene chain (H(2,2)-1,2-HOPO) to a long pentaethylene oxide chain (H(17O5,2)-1,2-HOPO). The thermodynamic stability of the europium complexes has been studied and reveals these complexes may be effective for biological measurements. Extension of the central bridge results in exclusion of the inner-sphere water molecule observed for [Eu(H(2,2)-1,2-HOPO)](-) going from a nonacoordinated to an octacoordinated Eu(III) ion. With the longer chain length ligands, the complexes display increased luminescence properties in aqueous medium with an optimum of 20% luminescence quantum yield for the [Eu(H(17O5,2)-1,2-HOPO)](-) complex. The luminescence properties for [Eu(H(14O4,2)-1,2-HOPO)](-) and [Eu(H(17O5,2)-1,2-HOPO)](-) are better than that of the model bis-tetradentate [Eu(5LIN(Me)-1,2-HOPO)(2)](-) complex, suggesting a different geometry around the metal center despite the geometric freedom allowed by the longer central chain in the H(mOn,2) scaffold. These differences are also evidenced by examining the luminescence spectra at room temperature and at 77 K and by calculating the luminescence kinetic parameters of the europium complexes.
Optimization of the Sensitization Process and Stability of Octadentate Eu(III) 1,2-HOPO Complexes
摘要:
The synthesis of a series of octadentate ligands containing the 1-hydroxypyridin-2-one (1,2-HOPO) group in complex with europium(III) is reported. Within this series, the central bridge connecting two diethylenetriamine units linked to two 1,2-HOPO chromophores at the extremities (5-LIN-1,2-HOPO) is varied from a short ethylene chain (H(2,2)-1,2-HOPO) to a long pentaethylene oxide chain (H(17O5,2)-1,2-HOPO). The thermodynamic stability of the europium complexes has been studied and reveals these complexes may be effective for biological measurements. Extension of the central bridge results in exclusion of the inner-sphere water molecule observed for [Eu(H(2,2)-1,2-HOPO)](-) going from a nonacoordinated to an octacoordinated Eu(III) ion. With the longer chain length ligands, the complexes display increased luminescence properties in aqueous medium with an optimum of 20% luminescence quantum yield for the [Eu(H(17O5,2)-1,2-HOPO)](-) complex. The luminescence properties for [Eu(H(14O4,2)-1,2-HOPO)](-) and [Eu(H(17O5,2)-1,2-HOPO)](-) are better than that of the model bis-tetradentate [Eu(5LIN(Me)-1,2-HOPO)(2)](-) complex, suggesting a different geometry around the metal center despite the geometric freedom allowed by the longer central chain in the H(mOn,2) scaffold. These differences are also evidenced by examining the luminescence spectra at room temperature and at 77 K and by calculating the luminescence kinetic parameters of the europium complexes.
LUMINESCENT 1-HYDROXY-2-PYRIDINONE CHELATES OF LANTHANIDES
申请人:Raymond Kenneth N.
公开号:US20100015725A1
公开(公告)日:2010-01-21
The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.
are excellent reducingagents with unique reactivity profiles. These reagents are typically used in superstoichiometric amounts, often in combination with harmful additives. Reactions catalytic in Ln(II) reagents that retain the reactivity and selectivity of the stoichiometric transformations are currently lacking due to the absence of effective and selective methods to form reactive Ln(II) species from