Structure-Based Design and Development of Functionalized Mercaptoguanine Derivatives as Inhibitors of the Folate Biosynthesis Pathway Enzyme 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase from Staphylococcus aureus
摘要:
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), an enzyme from the folate biosynthesis pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin and is a yet-to-be-drugged antimicrobial target. Building on our previous discovery that 8-mercaptoguanine (8MG) is an inhibitor of Staphylococcus aureus HPPK (SaHPPK), we have identified and characterized the binding of an S8-functionalized derivative (3). X-ray structures of both the SaHPPK/3/cofactor analogue ternary and the SaHPPK/cofactor analogue binary complexes have provided insight into cofactor recognition and key residues that move over 30 angstrom upon binding of 3, whereas NMR measurements reveal a partially plastic ternary complex active site. Synthesis and binding analysis of a set of analogues of 3 have identified an advanced new lead compound (11) displaying >20-fold higher affinity for SaHPPK than 8MG. A number of these exhibited low micromolar affinity for dihydropteroate synthase (DHPS), the adjacent, downstream enzyme to HPPK, and may thus represent promising new leads to bienzyme inhibitors.
[EN] HETEROCYCLIC GTP CYCLOHYDROLASE 1 INHIBITORS FOR THE TREATMENT OF PAIN<br/>[FR] INHIBITEURS HÉTÉROCYCLIQUES DE LA GTP CYCLOHYDROLASE 1 POUR LE TRAITEMENT DE LA DOULEUR
申请人:HERCULES TECHNOLOGY MAN CO V INC
公开号:WO2011035009A1
公开(公告)日:2011-03-24
The present invention relates to the field of small molecule heterocyclic inhibitors of GTP cyclohydrolase (GCH-I), or a tautomer, prodrug, or pharmaceutically acceptable salt thereof. The invention also features pharmaceutical compositions of the compounds and the medical use of these compounds for the treatment or prevention of pain (e.g., inflammatory pain, nociceptive pain, functional pain, or neuropathic pain).
Structure-Based Design and Development of Functionalized Mercaptoguanine Derivatives as Inhibitors of the Folate Biosynthesis Pathway Enzyme 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase from <i>Staphylococcus aureus</i>
作者:Matthew L. Dennis、Sandeep Chhabra、Zhong-Chang Wang、Aaron Debono、Olan Dolezal、Janet Newman、Noel P. Pitcher、Raphael Rahmani、Ben Cleary、Nicholas Barlow、Meghan Hattarki、Bim Graham、Thomas S. Peat、Jonathan B. Baell、James D. Swarbrick
DOI:10.1021/jm501417f
日期:2014.11.26
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), an enzyme from the folate biosynthesis pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin and is a yet-to-be-drugged antimicrobial target. Building on our previous discovery that 8-mercaptoguanine (8MG) is an inhibitor of Staphylococcus aureus HPPK (SaHPPK), we have identified and characterized the binding of an S8-functionalized derivative (3). X-ray structures of both the SaHPPK/3/cofactor analogue ternary and the SaHPPK/cofactor analogue binary complexes have provided insight into cofactor recognition and key residues that move over 30 angstrom upon binding of 3, whereas NMR measurements reveal a partially plastic ternary complex active site. Synthesis and binding analysis of a set of analogues of 3 have identified an advanced new lead compound (11) displaying >20-fold higher affinity for SaHPPK than 8MG. A number of these exhibited low micromolar affinity for dihydropteroate synthase (DHPS), the adjacent, downstream enzyme to HPPK, and may thus represent promising new leads to bienzyme inhibitors.
Heterocyclic GTP Cyclohydrolase 1 Inhibitors For the Treatment of Pain
申请人:Blagg Julian
公开号:US20120252791A1
公开(公告)日:2012-10-04
The present invention relates to the field of small molecule heterocyclic inhibitors of GTP cyclohydrolase (GCH-I), or a tautomer, prodrug, or pharmaceutically acceptable salt thereof. The invention also features pharmaceutical compositions of the compounds and the medical use of these compounds for the treatment or prevention of pain (e.g., inflammatory pain, nociceptive pain, functional pain, or neuropathic pain).