摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-chloro-9H-thioxanthene-9-thione | 17435-07-3

中文名称
——
中文别名
——
英文名称
2-chloro-9H-thioxanthene-9-thione
英文别名
2-chloro-thioxanthene-9-thione;2-Chlorothioxanthene-9-thione
2-chloro-9H-thioxanthene-9-thione化学式
CAS
17435-07-3
化学式
C13H7ClS2
mdl
——
分子量
262.784
InChiKey
QRXADHOQUFFZKG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.7
  • 重原子数:
    16
  • 可旋转键数:
    0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    57.4
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-chloro-9H-thioxanthene-9-thione一水合肼 作用下, 以 乙醇 为溶剂, 反应 2.0h, 以28.571%的产率得到
    参考文献:
    名称:
    催化剂控制的立体选择性巴顿-凯洛格烯化
    摘要:
    过度拥挤的烯烃可以通过多功能的 Barton-Kellogg 烯化反应快速制备,并且由于其独特的立体化学特征而作为功能分子具有显着的应用。因此,诱导的立体动力学使得分子开关和马达的受控运动成为可能,同时高构型稳定性防止了不需要的异构体加扰。双三环芳香烯是典型的拥挤烯烃,具有出色的立体化学性质,但迄今为止,它们的立体控制制备只能在立体有择反应和手性助剂的情况下进行。在此,我们报道了通过对各种双三环芳族烯进行对映体和非对映体控制的立体选择性巴顿-凯洛格烯化反应来实现直接催化剂控制。使用Rh 2 ( S -PTAD) 4作为催化剂,几种重氮化合物选择性地与硫酮偶联,还原后得到四种反折叠过度拥挤的烯烃立体异构体之一。通过催化剂控制与独特的硫杂丙环还原相结合,实现了完全的立体发散,从而提供了 er 值高达 99:1 的所有四种立体异构体。我们预计,这一策略将能够合成拓扑独特的过度拥挤烯烃,用于功能材
    DOI:
    10.1002/anie.202109519
  • 作为产物:
    描述:
    2-氯噻吨酮tetraphosphorus decasulfide 作用下, 以 甲苯 为溶剂, 反应 4.0h, 以70%的产率得到2-chloro-9H-thioxanthene-9-thione
    参考文献:
    名称:
    催化剂控制的立体选择性巴顿-凯洛格烯化
    摘要:
    过度拥挤的烯烃可以通过多功能的 Barton-Kellogg 烯化反应快速制备,并且由于其独特的立体化学特征而作为功能分子具有显着的应用。因此,诱导的立体动力学使得分子开关和马达的受控运动成为可能,同时高构型稳定性防止了不需要的异构体加扰。双三环芳香烯是典型的拥挤烯烃,具有出色的立体化学性质,但迄今为止,它们的立体控制制备只能在立体有择反应和手性助剂的情况下进行。在此,我们报道了通过对各种双三环芳族烯进行对映体和非对映体控制的立体选择性巴顿-凯洛格烯化反应来实现直接催化剂控制。使用Rh 2 ( S -PTAD) 4作为催化剂,几种重氮化合物选择性地与硫酮偶联,还原后得到四种反折叠过度拥挤的烯烃立体异构体之一。通过催化剂控制与独特的硫杂丙环还原相结合,实现了完全的立体发散,从而提供了 er 值高达 99:1 的所有四种立体异构体。我们预计,这一策略将能够合成拓扑独特的过度拥挤烯烃,用于功能材
    DOI:
    10.1002/anie.202109519
点击查看最新优质反应信息

文献信息

  • Temperature-sensitive nano-carriers
    申请人:Gwangju Institute of Science and Technology
    公开号:EP2082734A2
    公开(公告)日:2009-07-29
    The present invention relates to a process of preparing a biocompatible temperature-sensitive nano-carrier, which comprises the steps of (a) preparing a polymer dispersion comprising a water-soluble biocompatible polymer with photo-crosslinkable functional group(s), (b) preparing a polymer-initiator solution by adding an initiator to the polymer dispersion, and (c) preparing the nano-carrier by irradiating light onto the polymer-initiator solution, wherein the average diameter of the nano-carrier changes depending on temperature, and also relates to a temperature-sensitive nano-carrier. Nano-carriers of the present invention are temperature-sensitive, and their average diameter and pore size reversibly change in response to temperature change. In an embodiment of the present invention, nano-carriers can be prepared via a one-pot single-phase synthesis. A process of the present invention overcomes the conventional problems such as the use of organic solvent, complicated preparation steps, a relatively high manufacture cost and a low loading efficiency. Moreover, a process of the present invention can ensure the stability of drugs without necessitating high-speed homogenization or ultrasonification generally carried out in the conventional process.
    本发明涉及一种制备生物相容性温敏纳米载体的工艺,该工艺包括以下步骤:(a) 制备聚合物分散体,该聚合物分散体由具有光交联官能团的水溶性生物相容性聚合物组成、(b) 通过向聚合物分散体中添加引发剂制备聚合物引发剂溶液,以及 (c) 通过向聚合物引发剂溶液照射光制备纳米载体,其中纳米载体的平均直径随温度变化而变化,这也涉及一种温敏纳米载体。本发明的纳米载体对温度敏感,其平均直径和孔径随温度变化而可逆变化。在本发明的一个实施方案中,纳米载体可通过一锅单相合成法制备。本发明的工艺克服了使用有机溶剂、制备步骤复杂、制造成本相对较高和负载效率较低等传统问题。此外,本发明的工艺还能确保药物的稳定性,而无需进行传统工艺中通常要进行的高速均质或超声波处理。
  • TEMPERATURE-SENSITIVE NANO-CARRIERS
    申请人:TAE Gi-yoong
    公开号:US20090196937A1
    公开(公告)日:2009-08-06
    The present invention relates to a process of preparing a biocompatible temperature-sensitive nano-carrier, which comprises the steps of (a) preparing a polymer dispersion comprising a water-soluble biocompatible polymer with photo-crosslinkable functional group(s), (b) preparing a polymer-initiator solution by adding an initiator to the polymer dispersion, and (c) preparing the nano-carrier by irradiating light onto the polymer-initiator solution, wherein the average diameter of the nano-carrier changes depending on temperature, and also relates to a temperature-sensitive nano-carrier. Nano-carriers of the present invention are temperature-sensitive, and their average diameter and pore size reversibly change in response to temperature change. In an embodiment of the present invention, nano-carriers can be prepared via a one-pot single-phase synthesis. A process of the present invention overcomes the conventional problems such as the use of organic solvent, complicated preparation steps, a relatively high manufacture cost and a low loading efficiency. Moreover, a process of the present invention can ensure the stability of drugs without necessitating high-speed homogenization or ultrasonification generally carried out in the conventional process.
  • NANOCARRIER HAVING ENHANCED SKIN PERMEABILITY, CELLULAR UPTAKE AND TUMOUR DELIVERY PROPERTIES
    申请人:Tae Gi Yoong
    公开号:US20120087859A1
    公开(公告)日:2012-04-12
    The present invention relates to a biopolymer-modified nanocarrier in which chitosan is bound to a water-soluble biocompatible polymer that has been crosslinked via a photo-crosslinkable functional group; wherein the chitosan-modified nanocarrier has a diameter which changes in accordance with changes in temperature, has enhanced skin permeability or cellular uptake and selective delivery to cancer tissue as compared with a bare nanocarrier to which chitosan has not been bound, and exhibits characteristics that are advantageous in photothermal therapy. The chitosan-modified nanocarrier of the present invention exhibits highly superior efficacy as a transdermal carrier, since the skin permeability is enhanced to a significant level as compared with a bare nanocarrier that has no chitosan. The chitosan-modified nanocarrier of the present invention can be advantageous in the imaging and photothermal therapy of tumour cells and cancer cells, since the cellular uptake by tumour cells and cancer cells is substantially improved.
  • US8486528B2
    申请人:——
    公开号:US8486528B2
    公开(公告)日:2013-07-16
  • Catalyst‐Controlled Stereoselective Barton–Kellogg Olefination
    作者:Tanno A. Schmidt、Christof Sparr
    DOI:10.1002/anie.202109519
    日期:2021.10.25
    applications as functional molecules owing to their unique stereochemical features. The induced stereodynamics thereby enable the controlled motion of molecular switches and motors, while the high configurational stability prevents undesired isomeric scrambling. Bistricyclic aromatic enes are prototypical overcrowded alkenes with outstanding stereochemical properties, but their stereocontrolled preparation
    过度拥挤的烯烃可以通过多功能的 Barton-Kellogg 烯化反应快速制备,并且由于其独特的立体化学特征而作为功能分子具有显着的应用。因此,诱导的立体动力学使得分子开关和马达的受控运动成为可能,同时高构型稳定性防止了不需要的异构体加扰。双三环芳香烯是典型的拥挤烯烃,具有出色的立体化学性质,但迄今为止,它们的立体控制制备只能在立体有择反应和手性助剂的情况下进行。在此,我们报道了通过对各种双三环芳族烯进行对映体和非对映体控制的立体选择性巴顿-凯洛格烯化反应来实现直接催化剂控制。使用Rh 2 ( S -PTAD) 4作为催化剂,几种重氮化合物选择性地与硫酮偶联,还原后得到四种反折叠过度拥挤的烯烃立体异构体之一。通过催化剂控制与独特的硫杂丙环还原相结合,实现了完全的立体发散,从而提供了 er 值高达 99:1 的所有四种立体异构体。我们预计,这一策略将能够合成拓扑独特的过度拥挤烯烃,用于功能材
查看更多

同类化合物

贝恩酮盐酸盐 苯并噻喃并[4,3-b]吲哚 苯并[e][1]苯并噻喃并[4,3-b]吲哚 苯并[c]噻吨-7-酮 苯并[a]噻吨-12-酮 硫坎酮 硫代色烯-2-酮 海蒽酮甲磺酸盐 海蒽酮N-甲基氨基甲酸酯 海恩酮 异丙基硫代呫吨酮 噻吨酮-3-甲酰胺 [[(9-氧代-9H-噻吨-2-基)甲基]硫代]乙酸 N-[2-(二甲氨基)乙基]-9-羰基-9H-硫代占吨-4-甲酰胺 N,N-二甲基-N'-4H-硫代色烯-4-基酰亚胺基甲酰胺 N'-[4-(羟基甲基)-9-氧代-9H-噻吨-1-基]-N,N-二乙基乙烷-1,2-二胺N-氧化物 9-氧代噻吩-4-羧酸乙酯 9-氧代噻吨-1-羧酸甲酯 9-氧代-9h-硫代氧杂蒽-2-羧酸 9-氧代-9h-硫代氧杂蒽-2-羧酸 9-氧代-9H-硫代氧杂蒽-1-羧酸 9-氧代-9H-噻吨-3-甲腈 9-氧代-9H-噻吨-2-羧酸乙酯 9-氧代-3-(苯基磺酰基)-9H-噻吨-1-羧酸乙酯 9-噻吨酮 8H-苯并噻喃并[7,8-D][1,3]噻唑 8H-苯并噻喃并[6,7-D][1,3]噻唑 8-甲基-4H-硫色烯-4-酮 8-氯-N,N-二乙基-5-甲基-2H-[1]苯并噻喃并[4,3,2-cd]吲唑-2-乙胺N-氧化物 8-氯-5-甲基-N,N-二乙基-2H-[1]苯并噻喃并[4,3,2-cd]吲唑-2-乙烷-1-胺 8-氯-5-(羟基甲基)-N,N-二乙基-2H-[1]苯并噻喃并[4,3,2-cd]吲唑-2-乙烷-1-胺N-氧化物 7H-苯并噻喃并[6,5-d][1,3]噻唑 7-甲氧基-2-甲基-4H-硫代色烯-4-酮 7-甲基-9-氧代噻吨-3-羧酸乙酯 7-氨基-1-[[2-(二乙胺)乙基]氨基]-4-甲基-L-9H-噻吨-9-酮 6H-苯并噻喃并[7,6-D][1,3]噻唑 6-甲氧基-2-甲基-4H-硫代色烯-4-酮 6-甲基-4H-硫代色烯-4-酮 6-氯-1-({2-[乙基(2-羟基乙基)氨基]乙基}氨基)-4-(羟甲基)-9H-硫代占吨-9-酮 6-氟-4H-硫代色烯-4-酮 6-氟-2-(三氟甲基)-9H-噻吨-9-酮 6-(2-二乙基氨基乙胺)-1,2,3,4-四氢苯并[a]噻吨-12-酮 5-[(2-氨基乙基)氨基]-2-[2-(二乙基氨基)乙基]-2H-苯并噻喃并[4,3,2-Cd]吲唑-8-醇三盐酸盐 5-(2-二乙基氨基乙胺)-1,2,3,4-四氢苯并[c]噻吨-7-酮 4H-1-苯并噻喃-4-酮 1,1-二氧化物 4-羟基硫代香豆素 4-甲基-9H-噻吨-9-酮 4-氯-9H-噻吨-9-酮 4-氯-3-硝基硫代香豆素 4-氯-2H-1-苯并噻喃-3-甲醛