作者:Jeeyeon Kim、Youngjae Kim、Jinsung Tae、Miyoung Yeom、Bongjin Moon、Xi-Ping Huang、Bryan L. Roth、Kangho Lee、Hyewhon Rhim、Il Han Choo、Youhoon Chong、Gyochang Keum、Ghilsoo Nam、Hyunah Choo
DOI:10.1002/cmdc.201300240
日期:2013.11
AbstractThe 5‐HT7 receptor (5‐HT7R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5‐HT7R antagonist SB‐269970 exhibited antidepressant‐like activity, whereas systemic administration of the 5‐HT7R agonist AS‐19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5‐HT7R antagonists or agonists, aryl biphenyl‐3‐ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5‐HT7R. Among the synthesized compounds, 1‐([2′‐methoxy‐(1,1′‐biphenyl)‐3‐yl]methyl)‐4‐(2‐methoxyphenyl)piperazine (28) was the best binder to the 5‐HT7R (pKi=7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5‐HT7R over other serotonin receptor subtypes, such as 5‐HT1R, 5‐HT2R, 5‐HT3R, and 5‐HT6R. In a molecular modeling study, the 2‐methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.