Identification of Fused-Ring Alkanoic Acids with Improved Pharmacokinetic Profiles that Act as G Protein-Coupled Receptor 40/Free Fatty Acid Receptor 1 Agonists
摘要:
The G protein-coupled receptor 40 (GPR40)/free fatty acid receptor 1 (FFA1) has emerged as an attractive target for a novel insulin secretagogue with glucose dependency. We previously identified phenylpropanoic acid derivative 1 (3-{4-[(2',6'-dimethylbiphenyl-3-yl)methoxy]-2-fluorophenyl}propanoic acid) as a potent and orally available GPR40/FFA1 agonist; however, 1 exhibited high clearance and low oral bioavailability, which was likely due to its susceptibility to beta-oxidation at the phenylpropanoic acid moiety. To identify long-acting compounds, we attempted to block the metabolically labile sites at the phenylpropanoic acid moiety by introducing a fused-ring structure. Various fused-ring alkanoic acids with potent GPR40/FFA1 activities and good PK profiles were produced. Further optimizations of the lipophilic portion and the acidic moiety led to the discovery of dihydrobenzofuran derivative 53 ((6-{[4'-(2-ethoxyethoxy)-2',6'-dimethylbiphenyl-3-yl]methoxy}-2,3-dihydro-1-benzofuran-3-yl)acetic acid), which acted as a GPR40/FFA1 agonist with in vivo efficacy during an oral glucose tolerance test (OGTT) in rats with impaired glucose tolerance.
Trehan, I. R.; Singh, N. P.; Jain, Vinay K., Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 1995, vol. 34, # 6, p. 484 - 486
作者:Trehan, I. R.、Singh, N. P.、Jain, Vinay K.
DOI:——
日期:——
Studies on the syntheses of heterocyclic compounds. 675. A facile regiospecific and stereocontrolled synthesis of a diterpene alkaloid intermediate from benzocyclobutenes
Identification of Fused-Ring Alkanoic Acids with Improved Pharmacokinetic Profiles that Act as G Protein-Coupled Receptor 40/Free Fatty Acid Receptor 1 Agonists
The G protein-coupled receptor 40 (GPR40)/free fatty acid receptor 1 (FFA1) has emerged as an attractive target for a novel insulin secretagogue with glucose dependency. We previously identified phenylpropanoic acid derivative 1 (3-4-[(2',6'-dimethylbiphenyl-3-yl)methoxy]-2-fluorophenyl}propanoic acid) as a potent and orally available GPR40/FFA1 agonist; however, 1 exhibited high clearance and low oral bioavailability, which was likely due to its susceptibility to beta-oxidation at the phenylpropanoic acid moiety. To identify long-acting compounds, we attempted to block the metabolically labile sites at the phenylpropanoic acid moiety by introducing a fused-ring structure. Various fused-ring alkanoic acids with potent GPR40/FFA1 activities and good PK profiles were produced. Further optimizations of the lipophilic portion and the acidic moiety led to the discovery of dihydrobenzofuran derivative 53 ((6-[4'-(2-ethoxyethoxy)-2',6'-dimethylbiphenyl-3-yl]methoxy}-2,3-dihydro-1-benzofuran-3-yl)acetic acid), which acted as a GPR40/FFA1 agonist with in vivo efficacy during an oral glucose tolerance test (OGTT) in rats with impaired glucose tolerance.
Synthesis of Diastereomeric 8‐Fluoro‐ABC‐Steroid Building Blocks
作者:Michael Essers、Günter Haufe
DOI:10.1002/ejoc.202300206
日期:——
Two diastereomeric ABC-building blocks for hitherto widely unknown steroids with a fluorine substituent in 8-position were prepared in a convergent synthesis with eight linear steps from 6-chlorohex-1-ene and a benzocyclobutene derivative. Key step was an intramolecular Diels–Alder reaction of an o-quinodimethane with a fluorine-containing α,β-unsaturated ketone.