Structure−Activity Relationships of a Novel Class of Endothelin-A Receptor Antagonists and Discovery of Potent and Selective Receptor Antagonist, 2-(Benzo[1,3]dioxol-5-yl)-6-isopropyloxy-4-(4-methoxyphenyl)-2H-chromene-3- carboxylic Acid (S-1255). 1. Study on Structure−Activity Relationships and Basic Structure Crucial for ETA Antagonism
摘要:
A novel series of endothelin-A (ETA) selective receptor antagonists having a 2H-chromene skeleton are described. A lead compound, 2-(benzo[1,3]dioxol-5-yl)-2H-chromene-3-carboxylic acid (3), was found by modifications of our own angiotensin II antagonist. A structure-activity relationship (SAR) study of 3 reveals that the structural requirements essential for potent and selective ETA receptor binding affinity are the m,p-methylenedioxyphenyl, carboxyl, and isopropoxy groups at the 2-, 3-, and 6-positions, respectively, on the (R)-2H-chromene skeleton. The substituent at the 4-position is also important for improving the activity, and various hydrophobic functional groups of 6-9 Angstrom such as liner, branched, and cyclic aliphatic groups, unsubstituted and substituted aryl groups, and even halogen atoms were acceptable. These results suggest that (R)-2-(benzo[1,3]dioxol-5-yl)-6-isopropoxy-2H-chromene-3-carboxylic acid, formula 108, is the crucial basic structure to be recognized by the ETA receptor. The most potent compound is (R)-48 (S-1255), which binds to the ETA receptor with an IC50 value of 0.19 nM and is 630-fold selective for the ETA receptor than for the ETB receptor. This compound has 55% oral bioavailability in rats. On the basis of the SAR, the roles of each substituent in the receptor binding are discussed.
Structure−Activity Relationships of a Novel Class of Endothelin-A Receptor Antagonists and Discovery of Potent and Selective Receptor Antagonist, 2-(Benzo[1,3]dioxol-5-yl)-6-isopropyloxy-4-(4-methoxyphenyl)-2H-chromene-3- carboxylic Acid (S-1255). 1. Study on Structure−Activity Relationships and Basic Structure Crucial for ETA Antagonism
摘要:
A novel series of endothelin-A (ETA) selective receptor antagonists having a 2H-chromene skeleton are described. A lead compound, 2-(benzo[1,3]dioxol-5-yl)-2H-chromene-3-carboxylic acid (3), was found by modifications of our own angiotensin II antagonist. A structure-activity relationship (SAR) study of 3 reveals that the structural requirements essential for potent and selective ETA receptor binding affinity are the m,p-methylenedioxyphenyl, carboxyl, and isopropoxy groups at the 2-, 3-, and 6-positions, respectively, on the (R)-2H-chromene skeleton. The substituent at the 4-position is also important for improving the activity, and various hydrophobic functional groups of 6-9 Angstrom such as liner, branched, and cyclic aliphatic groups, unsubstituted and substituted aryl groups, and even halogen atoms were acceptable. These results suggest that (R)-2-(benzo[1,3]dioxol-5-yl)-6-isopropoxy-2H-chromene-3-carboxylic acid, formula 108, is the crucial basic structure to be recognized by the ETA receptor. The most potent compound is (R)-48 (S-1255), which binds to the ETA receptor with an IC50 value of 0.19 nM and is 630-fold selective for the ETA receptor than for the ETB receptor. This compound has 55% oral bioavailability in rats. On the basis of the SAR, the roles of each substituent in the receptor binding are discussed.
Asymmetric construction of six vicinal stereogenic centers on hexahydroxanthones <i>via</i> organocatalytic one-pot reactions
作者:Min Zhang、Xue-Wen He、Ya Xiong、Xiong Zuo、Wei Zhou、Xiong-Li Liu
DOI:10.1039/d1cc02570h
日期:——
herein we report an organocatalytic Michael–Michael–Aldol-decarboxylation reaction that provides efficient access to biologically interesting fully substituted hexahydroxanthones bearing six contiguous stereogenic centers from readily accessible materials in acceptable yields (up to 63%) and excellent stereoselectivities (up to 10 : 1 dr and >99% ee). In other words, the reaction efficiently produces
受六氢氧杂蒽酮的化学和生物学的启发,我们在此报告了一种有机催化迈克尔-迈克尔-羟醛脱羧反应,该反应可以有效地从易于获得的材料中以可接受的产率(高达 63%)获得带有六个连续立体中心的具有生物学意义的完全取代的六氢氧杂蒽酮。和出色的立体选择性(高达 10 : 1 dr 和 >99% ee)。换句话说,该反应在一锅操作中有效地产生了三个化学键和多达六个邻位立体中心。特别是,据我们所知,这是一种不对称的有机催化策略,能够在非螺环六氢氧杂蒽酮骨架上首次构建六个邻位立体中心。