摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tert-butyl 3-(benzo[d]thiazol-2-yl)propanoate | 1380324-76-4

中文名称
——
中文别名
——
英文名称
tert-butyl 3-(benzo[d]thiazol-2-yl)propanoate
英文别名
Tert-butyl 3-(1,3-benzothiazol-2-yl)propanoate;tert-butyl 3-(1,3-benzothiazol-2-yl)propanoate
tert-butyl 3-(benzo[d]thiazol-2-yl)propanoate化学式
CAS
1380324-76-4
化学式
C14H17NO2S
mdl
MFCD24879656
分子量
263.36
InChiKey
NHFZWBAYBRNKBT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.5
  • 重原子数:
    18
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.428
  • 拓扑面积:
    67.4
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    2-羟甲基苯并噻唑(叔丁氧基羰基亚甲基)三苯基磷烷potassium tert-butylate 、 C16H35BrMnN3O2P2 作用下, 以 1,4-二氧六环 为溶剂, 反应 12.0h, 以80.6%的产率得到tert-butyl 3-(benzo[d]thiazol-2-yl)propanoate
    参考文献:
    名称:
    锰与磷叶立德的锰催化偶联选择性构建CC和C = C键
    摘要:
    在本文中,我们报道了锰与磷酰化物的锰催化偶联。伯醇与磷酰化物偶联形成碳碳单键(CC)和碳碳双键(C = C)的选择性可以通过配体控制。在更具挑战性的仲醇与磷酰化物的转化中,通过反应条件,即碱的量,可以控制形成CC与C = C键的选择性。偶联反应的范围和局限性通过21种醇和15种烷基化物的转化得到了彻底评估。值得注意的是,与基于贵金属络合物作为催化剂的现有方法相比,本催化体系基于富含稀土的锰催化剂。该反应也可以在顺序的一锅法反应中进行,该反应在锰催化的C-C和C = C键形成后就地生成磷叶立德。机理研究表明,CC键是通过借位氢途径生成的,而C = C键的形成遵循无受体的脱氢偶联途径。
    DOI:
    10.1002/adsc.202001209
点击查看最新优质反应信息

文献信息

  • Rh(I)–Bisphosphine-Catalyzed Asymmetric, Intermolecular Hydroheteroarylation of α-Substituted Acrylate Derivatives
    作者:Claire M. Filloux、Tomislav Rovis
    DOI:10.1021/ja511445x
    日期:2015.1.14
    Asymmetric hydroheteroarylation of alkenes represents a convenient entry to elaborated heterocyclic motifs. While chiral acids are known to mediate asymmetric addition of electron-rich heteroarenes to Michael acceptors, very few methods exploit transition metals to catalyze alkylation of heterocycles with olefins via a C–H activation, migratory insertion sequence. Herein, we describe the development
    烯烃的不对称氢杂芳基化代表了复杂杂环基序的便捷进入。虽然已知手性酸可以介导富电子杂芳烃向 Michael 受体的不对称加成,但很少有方法利用过渡金属通过 C-H 活化、迁移插入序列催化杂环与烯烃的烷基化。在此,我们描述了α-取代丙烯酸酯与苯并恶唑的不对称分子间氢杂芳基化反应的发展。该反应以中等至优异的产率和良好至优异的对映选择性提供2-取代的苯并恶唑。值得注意的是,一系列机制研究似乎与涉及 Rh(I)-烯醇化物对映选择性质子化的途径相矛盾,尽管事实上在芳基硼酸与甲基丙烯酸酯衍生物的相关加成中几乎一致地调用了这种机制。相反,有证据表明,迁移插入或β-氢化物消除具有对映决定性,Rh(I)-烯醇化物异构化为Rh(I)-杂苄基物质可将所得的α-立构中心与差向异构化隔离开来。庞大的配体 CTH-(R)-Xylyl-P-Phos 对于反应性和对映选择性至关重要,因为它可能会阻止苯并恶唑底物或中间体与循
  • A Versatile Rhodium(I) Catalyst System for the Addition of Heteroarenes to both Alkenes and Alkynes by a CH Bond Activation
    作者:Jaeyune Ryu、Seung Hwan Cho、Sukbok Chang
    DOI:10.1002/anie.201200120
    日期:2012.4.10
    efficient and convenient rhodium catalyst system was developed for the title transformation. A base co‐catalyst was found to facilitate the key arene CH bondactivation step and substrate scope was very broad, including both electron‐deficient pyridine N‐oxides, and electron‐rich azoles. The catalytic system was effective for the hydroheteroarylation of both alkenes and alkynes and gave excellent regio‐
    添加铑:为标题转化开发了高效便捷的铑催化剂体系。发现一种碱助催化剂可以促进关键的芳烃CH键活化步骤,并且底物范围非常广泛,包括缺电子的吡啶N-氧化物和富电子的唑类。该催化体系对烯烃和炔烃的加氢杂芳基化反应均有效,并具有出色的区域选择性和立体选择性。
  • Selective Construction of C−C and C=C Bonds by Manganese Catalyzed Coupling of Alcohols with Phosphorus Ylides
    作者:Xin Liu、Thomas Werner
    DOI:10.1002/adsc.202001209
    日期:2021.2.16
    manganese catalyzed coupling of alcohols with phosphorus ylides. The selectivity in the coupling of primary alcohols with phosphorus ylides to form carbon‐carbon single (C−C) and carbon‐carbon double (C=C) bonds can be controlled by the ligands. In the conversion of more challenging secondary alcohols with phosphorus ylides the selectivity towards the formation of C−C vs. C=C bonds can be controlled by the
    在本文中,我们报道了锰与磷酰化物的锰催化偶联。伯醇与磷酰化物偶联形成碳碳单键(CC)和碳碳双键(C = C)的选择性可以通过配体控制。在更具挑战性的仲醇与磷酰化物的转化中,通过反应条件,即碱的量,可以控制形成CC与C = C键的选择性。偶联反应的范围和局限性通过21种醇和15种烷基化物的转化得到了彻底评估。值得注意的是,与基于贵金属络合物作为催化剂的现有方法相比,本催化体系基于富含稀土的锰催化剂。该反应也可以在顺序的一锅法反应中进行,该反应在锰催化的C-C和C = C键形成后就地生成磷叶立德。机理研究表明,CC键是通过借位氢途径生成的,而C = C键的形成遵循无受体的脱氢偶联途径。
查看更多

同类化合物

(1Z)-1-(3-乙基-5-羟基-2(3H)-苯并噻唑基)-2-丙酮 齐拉西酮砜 阳离子蓝NBLH 阳离子荧光黄4GL 锂2-(4-氨基苯基)-5-甲基-1,3-苯并噻唑-7-磺酸酯 铜酸盐(4-),[2-[2-[[2-[3-[[4-氯-6-[乙基[4-[[2-(硫代氧代)乙基]磺酰]苯基]氨基]-1,3,5-三嗪-2-基]氨基]-2-(羟基-kO)-5-硫代苯基]二氮烯基-kN2]苯基甲基]二氮烯基-kN1]-4-硫代苯酸根(6-)-kO]-,(1:4)氢,(SP-4-3)- 铜羟基氟化物 钾2-(4-氨基苯基)-5-甲基-1,3-苯并噻唑-7-磺酸酯 钠3-(2-{(Z)-[3-(3-磺酸丙基)-1,3-苯并噻唑-2(3H)-亚基]甲基}[1]苯并噻吩并[2,3-d][1,3]噻唑-3-鎓-3-基)-1-丙烷磺酸酯 邻氯苯骈噻唑酮 西贝奈迪 螺[3H-1,3-苯并噻唑-2,1'-环戊烷] 螺[3H-1,3-苯并噻唑-2,1'-环己烷] 葡萄属英A 草酸;N-[1-[4-(2-苯基乙基)哌嗪-1-基]丙-2-基]-2-丙-2-基氧基-1,3-苯并噻唑-6-胺 苯酰胺,N-2-苯并噻唑基-4-(苯基甲氧基)- 苯酚,3-[[2-(三苯代甲基)-2H-四唑-5-基]甲基]- 苯胺,N-(3-苯基-2(3H)-苯并噻唑亚基)- 苯碳杂氧杂脒,N-1,2-苯并异噻唑-3-基- 苯甲基2-甲基哌啶-1,2-二羧酸酯 苯并噻唑正离子,2-[3-(1,3-二氢-1,3,3-三甲基-2H-吲哚-2-亚基)-1-丙烯-1-基]-3-乙基-,碘化(1:1) 苯并噻唑正离子,2-[(2-乙氧基-2-羰基乙基)硫代]-3-甲基-,溴化 苯并噻唑啉 苯并噻唑-d4 苯并噻唑-6-腈 苯并噻唑-5-羧酸 苯并噻唑-5-硼酸频哪醇酯 苯并噻唑-4-醛 苯并噻唑-4-乙酸 苯并噻唑-2-磺酸钠 苯并噻唑-2-磺酸 苯并噻唑-2-磺酰氟 苯并噻唑-2-甲醛 苯并噻唑-2-甲酸 苯并噻唑-2-甲基甲胺 苯并噻唑-2-基磺酰氯 苯并噻唑-2-基叠氮化物 苯并噻唑-2-基-邻甲苯-胺 苯并噻唑-2-基-己基-胺 苯并噻唑-2-基-(4-氯-苯基)-胺 苯并噻唑-2-基-(4-氟-苯基)-胺 苯并噻唑-2-基-(4-乙氧基-苯基)-胺 苯并噻唑-2-基-(2-甲氧基-苯基)-胺 苯并噻唑-2-基-(2,6-二甲基-苯基)-胺 苯并噻唑-2-基(对甲苯基)甲醇 苯并噻唑-2-乙酸甲酯 苯并噻唑-2-乙腈 苯并噻唑-2(3H)-酮N2-[1-(吡啶-4-基)乙亚基]腙 苯并噻唑-2 - 丙基 苯并噻唑,6-(3-乙基-2-三氮烯基)-2-甲基-(8CI)