Synthesis and Biological Evaluation of Substituted Flavones as Gastroprotective Agents
摘要:
Flavone (1) was found to protect against ethanol-induced gastric damage in rats; however, it is known that certain compounds in the flavone class, including flavone itself, are inducers of hepatic drug metabolizing enzymes. With the hope of identifying gastroprotective flavones that have minimal effects on drug metabolizing enzymes, we have synthesized and evaluated selected flavone analogs. Gastroprotective potency in the ethanol model was retained by methoxy substitution in the 5-position (4) and by methoxy (12) or methyl (14) substitution in the 7-position. A number of substituted analogs of the potent molecule 5-methoxyflavone (4) were also synthesized, and in many cases, these substitutions provided gastroprotective molecules. In order to assess liver enzyme induction potential, two of the gastroprotective flavones, 7-methoxyflavone (12) and 5-methoxy-4'-fluoroflavone (26), were examined for their effect on liver microsomal cytochrome P450 and 7-ethoxyresorufin O-dealkylase (CYP1A) activity. These two compounds caused minimal changes in the cytochrome P450 concentration and were considerably less potent than beta-naphthoflavone as inducers of CYP1A enzyme activity. Furthermore, following oral administration to rats, 5-methoxy-4'-fluoroflavone (26) was found to protect against indomethacin-induced gastric damage. These results indicate that, through appropriate substitution, flavones can be obtained that are gastroprotective but have minimal effects on drug-metabolizing enzymes.
copper-catalyzed chemoselective oxidative O-aroylation of 2-acetylphenols, alkyl salicylates and 1,3-dicarbonyl compounds with a wide range of styrene derivatives are described. This approach provides an efficient chemoselective preparation of phenol, alkyl salicylate and enol esters in good to excellent yields. This method represents an alternative protocol for the classical esterification reactions.
Synthesis of flavones, 4-thioflavones and 4-iminoflavones was carried out with the substitution of variable halogens, methyl, methoxy and nitro groups in the A, B and AB rings of the respective compounds and we also report here their antibacterialactivity. Most of the synthesized compounds were found to be active against Escherichia coli, Bacillus subtilis, Shigella flexnari, Salmonella aureus, Salmonella