摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tris(tert-butyl)silylamine lithium salt | 82135-42-0

中文名称
——
中文别名
——
英文名称
tris(tert-butyl)silylamine lithium salt
英文别名
tri-tert-butylSiNHLi;t-Bu3SiNHLi;lithium;tritert-butylsilylazanide
tris(tert-butyl)silylamine lithium salt化学式
CAS
82135-42-0
化学式
C12H28LiNSi
mdl
——
分子量
221.388
InChiKey
XNRACMFHHVIELU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.39
  • 重原子数:
    15
  • 可旋转键数:
    3
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    1
  • 氢给体数:
    1
  • 氢受体数:
    1

SDS

SDS:ba5d84a2e8f71263f663de5bd4416c9c
查看

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Cummins, Christopher C.; Van Duyne, Gregory D.; Schaller, Christopher P., Organometallics, 1991, vol. 10, # 1, p. 164 - 170
    摘要:
    DOI:
  • 作为产物:
    描述:
    tri-t-butylsilanelithium amide甲基锂 作用下, 以 四氢呋喃乙醚正庚烷 为溶剂, 反应 48.0h, 生成 tris(tert-butyl)silylamine lithium salt
    参考文献:
    名称:
    Supersilyliertes Ammoniak und supersilyliertes Hydrazin: Synthese, Struktur und Eigenschaften / Supersilyl Ammonia and Supersilyl Hydrazine: Synthesis, Structure and Properties
    摘要:
    一种优异的超硅基化剂,超硅基三氟甲磺酸酯,tBu3SiO3SCF3,可通过tBu3SiH和CF3SO3H轻松获得。超硅基三氟甲磺酸酯,tBu3SiO3SCF3,与锂酰胺或锂肼反应,形成超硅基胺,tBu3SiNH2,或超硅基肼,tBu3SiNHNH2和tBu3SiNH-HNSitBu3。超硅基三氟甲磺酸酯,tBu3SiO3SCF3,和双超硅基肼,tBu3SiNH-HNSitBu3的结构已通过X射线结构分析确定。
    DOI:
    10.1515/znb-2002-0208
点击查看最新优质反应信息

文献信息

  • Synthesis of (<sup>t</sup>Bu<sub>3</sub>SiNH)<sub>2</sub>ClW⋮WCl(NHSi<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> and Its Degradation via NH Bond Activation
    作者:Stephen M. Holmes、Daniel F. Schafer、Peter T. Wolczanski、Emil B. Lobkovsky
    DOI:10.1021/ja010957h
    日期:2001.10.31
    NaW2Cl7(THF)5 with 4 equiv of (t)Bu3SiNHLi afforded the C2 W(III) dimer [((t)Bu3SiNH)2WCl]2 (1, d(W triple bond W) = 2.337(2) A), which is a rare, primary amide M2X4Y2 species. Its degradation provided evidence of NH bond activation by the ditungsten bond. Addition of 2 equiv of (t)Bu3SiNHLi or TlOSi(t)Bu3 to 1 yielded H2 and hydride ((t)Bu3SiN)2((t)Bu3SiNH)WH (2, d(WH) = 1.67(3) A) or ((t)Bu3SiN)2((t)Bu3SiO)WH
    用 4 当量的 (t)Bu3SiNHLi 处理 NaW2Cl7(THF)5 得到 C2 W(III) 二聚体 [((t)Bu3SiNH)2WCl]2 (1, d(W 三键 W) = 2.337(2) A) ,这是一种罕见的伯酰胺 M2X4Y2 物种。它的降解提供了二键激活 NH 键的证据。将 2 当量的 (t)Bu3SiNHLi 或 TlOSi(t)Bu3 添加到 1 生成 H2 和氢化物 ((t)Bu3SiN)2((t)Bu3SiNH)WH (2, d(WH) = 1.67(3) A) 或((t)Bu3SiN)2((t)Bu3SiO)WH (3)。1 in py 的热解 (60 摄氏度, 16 小时) 得到 ((t)Bu3SiN)2WHCl(py) (4-py, 40-50%), ((t)Bu3SiN)2WCl2(py) (6-py, 10%) 和 ((t)Bu3SiN)2HW(mu-
  • Ethylene Polymerization with Half-Sandwich Allyl Imido Complexes of Tantalum
    作者:David M. Antonelli、Ann Leins、Jeffrey M. Stryker
    DOI:10.1021/om9703494
    日期:1997.6.1
    The imido-based half-sandwich complex Cp*Ta(N(2,6-diisopropylphenyl))(η1-C3H5)(η3-C3H5) (3) polymerizes ethylene in the presence of [(C6H5)3C]+[(C6F5)4B]- or B(C6F5)3, while chloride and alkyl derivatives are inactive in the presence of MAO or alkyl abstraction reagents. In contrast, however, Cp*Ta(NSi(tert-butyl)3)Cl2 (5) polymerizes ethylene in the presence of MAO while Cp*Ta(NSi(tert-butyl)3)(η1-C3H5)(η3-C3H5)
    基于酰亚胺半夹心络合物的Cp * TA(N(2,6-二异丙基))(η 1 -C 3 ħ 5)(η 3 -C 3 H ^ 5)(3)聚合中的存在下进行[乙烯( C 6 H 5)3 C] + [(C 6 F 5)4 B] -或B(C 6 F 5)3,而化物和烷基衍生物在MAO或烷基提取试剂的存在下是无活性的。相反,Cp * TA(NSi(叔丁基)3)Cl2(5)聚合乙烯在MAO存在下,同时的Cp * TA(NSI(叔丁基)3)(η 1 -C 3 ħ 5)(η 3 -C 3 H ^ 5)(6)1和Cp * TA(NSi(叔丁基)3)Me 2(4)在烷基抽象剂的存在下基本上是无活性的。
  • Selectivities in Hydrocarbon Activation:  Kinetic and Thermodynamic Investigations of Reversible 1,2-RH-Elimination from (silox)<sub>2</sub>(<sup>t</sup>Bu<sub>3</sub>SiNH)TiR (silox = <sup>t</sup>Bu<sub>3</sub>SiO)
    作者:Jordan L. Bennett、Peter T. Wolczanski
    DOI:10.1021/ja9707419
    日期:1997.11.1
    Addition of 2.0 equiv of Na(silox) to TiCl4(THF)(2) afforded (silox)(2)TiCl2 (1), which yielded (silox)(2)((Bu3SiNH)-Bu-t)TiCl (2-Cl) upon treatment with (Bu3SiNLi)-Bu-t. Grignard or alkyllithium additions to 2-Cl or 1,2-RH-addition to transient (silox)(2)Ti=(NSiBu3)-Bu-t (3) produced (silox)(2)((Bu3SiNH)-Bu-t)TiR (2-R; R = Me, Et, CH2Ph = Bz, CH=CH2 = Vy, Bu-c, Bu-n, Ph, H, Pr-c, (c)Pe, CH2-3,5-Me2C6H3 = Mes, (neo)Hex, (c)Hex, eta(3)-H2CHCH2, eta(3)-H2CCHCHMe). Insertions of C2H4, butadiene, HC2H, and (HC2Bu)-Bu-t into the titanium-hydride bond of 2-H generated (silox)(2)((Bu3SiNH)-Bu-t)TiR (2-R; R = Et, eta(3)-H2CCHCHMe, Vy, E-CH=(CHBu)-Bu-t). Trapping of 3 by donors L afforded (silox)(2)LTi=(NSiBu3)-Bu-t (3-L; L = OEt2, THF (X-ray, two independent molecules: d(Ti=N) = 1.772(3), 1.783(3) Angstrom), py, PMe3, NMe3, NEt3) and metallacycles (silox)(2)((Bu3SiN)-Bu-t)TiCR=CR' (3-RC2R'; RC2R' = HC2H, MeC2Me, EtC2Et, (HC2Bu)-Bu-t) and (silox)(2)((Bu3SiN)-Bu-t)TiCH2CH2 (3-C2H4). Kinetics of 1,2-RH-elimination from 2-R revealed a first-order process (24.8 degrees C): R = Bz < Mes < H < Me (1.54(10) x 10(-5) s(-1)) < (neo)Hex < Et < Bu-n < Bu-c < (c)Pe < (c)Hex < Pr-c < Vy < Ph. Kinetics data, large 1,2-RH/D-elimination KIE's (e.g., MeH/D, 13.7(9), 24.8 degrees C), and Eyring parameters (e.g., 2-Me, Delta H double dagger = 20.2(12) kcal/mol, Delta S double dagger = -12(4) eu) portray a four-center, concerted transition state when the N ... H ... R linkage is nearly linear. Equilibrium measurements led to the following relative standard free energy scale: 2-(c)Hex > 2-(c)Pe > 2-Pr-n similar to 2-Bu-n > 2-(neo)Hex > 2-Et, 2-Bu-c > 2-CH2SiMe3 > 2-Ph > 2-Me > 2-Bz > 2-Pr-c similar to 2-Mes > 2-Vy > 3-C2H4 > 3-NEt3 > 2-H > 3-OEt2 > 3-EtC2Et > 3-MeC2Me > 3-THF > 3-NMe3 > 3-PMe3 > 3-py. A correlation of D(TiR)(rel) to D(RH) revealed greater differences in titanium-carbon bond energies. THF loss from 3-THF allowed a rough estimate of Delta G degrees(3). Using thermochemical cycles, relative activation energies for 1,2-RH-addition were assessed: (c)HexH > (c)PeH > (BuH)-Bu-n > (neo)HexH > EtH > BzH > (BuH)-Bu-c > MesH > MeH > PhH > (PrH)-Pr-c > VyH > 3-C2H4 formation > H-2. On the basis of a parabolic model, C-H bond activation selectivities are influenced by the relative ground state energies of 2-R and a parameter representing the reaction coordinate. A more compressed reaction coordinate for sp(2)- vs sp(3)-substrates eases their activation.
  • With, Jan de; Horton, Andrew D., Angewandte Chemie, 1993, vol. 105, p. 958 - 960
    作者:With, Jan de、Horton, Andrew D.
    DOI:——
    日期:——
  • Hydrocarbon Activation via Reversible 1,2-RH-Elimination from (<sup>t</sup>Bu<sub>3</sub>SiNH)<sub>3</sub>ZrR:  Synthetic, Structural, and Mechanistic Investigations
    作者:Christopher P. Schaller、Christopher C. Cummins、Peter T. Wolczanski
    DOI:10.1021/ja950745i
    日期:1996.1.1
    Hydrocarbyl complexes, ((t)Bu(3)SiNH)(3)ZrR (1-R), were prepared via metatheses of ((t)Bu(3)SiNH)(3)ZrCl (1-Cl) with RMgX or RLi (R = Me, Et, Cy, CH(2)Ph, allyl, CH=CH2, Ph, CH(2)(t)Bu, C=CPh, C=C(t)Bu), through addition of isobutylene, H2C=C=CMe(2), and acetylene to 1-H (R = (i)Bu, dma, or CH=CH2), and by CH-bond activation; thermal 1,2-RH-elimination from 1-R produced putative ((t)Bu(3)SiNH)(2)Zr=NSi(t)Bu(3) (2), which was subsequently trapped by R'H. Thermolysis of 1-R (similar to 100 degrees C, R = Me or Cy) in the presence of H-2, c-C3H6, and CH4 in cyclohexane or neat C6H6, mesitylene, and toluene afforded 1-R (R = ii, Pr-c, Me, Ph, CH2-3,5-Me(2)C(6)H(3)) and a mixture of 1-CH(2)Ph and 1-C(6)H(4)Me, respectively. Exposure of 1-Cy to C2H4 or C6H6 in cyclohexane provided 1-CH=CH2 or 1-Ph, respectively, but further reaction produced 1(2)-(trans-HC=CH) and 1(2)-(p-C6H4) through double CH-bond activation. Thermolysis of ((t)Bu(3)SiND)(3)ZrCH3 (1-(ND)(3)-CH3) in C6H6 or C6D6 yielded CH3D, and 1C(6)H(5) or 1-(ND)(3)C6D5, through reversible benzene activation. Thermolysis of l-Cy in neat cyclohexane, and with C2H6 Or CMe(4) present, gave cyclometalation product ((t)Bu(3)SiNH)(2)ZrNHSi(t)Bu(2)CMe(2)CH(2) (3) and 1-NHSi(t)Bu(3). In THF, thermolysis of 1-CH3 afforded ((t)Bu(3)SiNH)(2)-(THF)Zr=NSi(t)Bu(3) (2-THF); at 25 degrees C, 1-H lost H-2 in the presence of L (L = THF, Et(2)O, NMe(3), PMe(3)) generating 2-L; 2-L (L = Et(2)O py) was also prepared via ligand exchange with 2-THF. Single crystal X-ray diffraction studies of 2-THF revealed a pseudotetrahedral core, with a long Zr=N bond distance (1.978(8) Angstrom), normal Zr-N(H) bond lengths (2.028(8), 2.031(8) Angstrom, similar amide (154.7(5), 158.1(5)degrees) and imide (156.9(5)degrees) bond angles, and little O(p pi) --> Zr(d pi) bonding. Crystal data: monoclinic, P2(1)/n, a = 13.312(5) Angstrom, b = 18.268(6) Angstrom, c = 20.551(7) Angstrom, beta = 92.30(3)degrees, Z = 4, T = 25 degrees C. 2-Et(2)O thermally eliminated C2H4 to give 1-OEt through gamma-CH activation. Kinetic isotope effects (KIE) on 1,2-RD-elimination from 1-(ND)(3)-R (95.7 degrees C, R = CH3, z(Me) = 6.3(1); CH(2)Ph, z(Bz) = 7.1(6); Ph, z(Ph) = 4.6(4)) and CD3H loss from 1-CD3((CH3)/k(CD3) = (z'(Me))(3) = 1.32) revealed a symmetric H-transfer in a loose transition state. 1,2-RH-elimination rates follow: (96.7 degrees C, k(R) (x10(4) s(-1)) = 22.6(2), Ph; 15.5(2), Pr-c; 13.2(4), CH=CH2; 10.4(2), Cy; 3.21(6), Et; 3.2(1), (i)Bu; 1.3(1), dma; 1.51(6), H; 1.42(4), CH(2)(t)Bu; 1.06(2), Me; 0.34(2), CH2-3,5-Me(2)C(6)H(3); 0.169(3), CH(2)Ph).Competition for ((t)Bu(3)SiNH)(2)Zr=NSi(t)Bu(3) (2) by RH/R'H and equilibria provided information about the stabilities of 1-R relative to 1-Pr-c (R = CPr (0.0 kcal/mol) < Ph (0.3) < CH(2)Ph (0.7) < Me (1.2) < CH(2)(t)Bu (greater than or equal to 7.6) < Et (greater than or equal to 7.8) < Cy (greater than or equal to 10.9)). Transition state energies afforded relative C-H bond activation selectivities (Delta Delta G double dagger relative to Pr-c-H): (PrH)-Pr-c approximate to ArH (0.0 kcal/mol) > MeH (3.4) > PhCH(2)H (4.0) > cyclometalation (greater than or equal to 8.5) > EtH(greater than or equal to 8.9) > (t)BuCH(2)H (greater than or equal to 9.3) > CyH (greater than or equal to 11.2). A correlation of Delta G double dagger(1,2-RH-elimination) with D(R-H) indicated generally late transition states but suggested an earlier composition for the alkyls, as rationalized through a Hammond analysis. Correlation of Delta G double dagger(1,2-RH-elimination) with RH proton affinity implicated tight binding of RH in the transition state and possible RH-binding intermediates (2-RH). 1,2-HC=CR-elimination from 1-C=CR was not observed, but second-order exchanges of 1-C=CPh with (t)BuC=CH, and 1-C=C(t)Bu with HC=CPh were indicative of an associative pathway. All data can be accommodated by the following mechanism: 1-R + R'H reversible arrow 2-RH + R'H reversible arrow 2-R'H + RH reversible arrow 1-R' + RH; a variant where 2 mediates reversible 2-RH + R'H exchange is less likely.
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 鲸蜡基聚二甲基硅氧烷 骨化醇杂质DCP 马沙骨化醇中间体 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镓,二(1,1-二甲基乙基)甲基- 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锑,二溴三丁基- 铷,[三(三甲基甲硅烷基)甲基]- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 金刚烷基乙基三氯硅烷 酰氧基丙基双封头 达格列净杂质 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷 辛乙基三硅氧烷 路易氏剂-3 路易氏剂-2 路易士剂 试剂Cyanomethyl[3-(trimethoxysilyl)propyl]trithiocarbonate 试剂3-[Tris(trimethylsiloxy)silyl]propylvinylcarbamate 试剂3-(Trimethoxysilyl)propylvinylcarbamate 试剂2-(Trimethylsilyl)cyclopent-2-en-1-one 试剂11-Azidoundecyltriethoxysilane 西甲硅油杂质14 衣康酸二(三甲基硅基)酯 苯胺,4-[2-(三乙氧基甲硅烷基)乙基]- 苯磺酸,羟基-,盐,单钠聚合甲醛,1,3,5-三嗪-2,4,6-三胺和脲 苯甲醇,a-[(三苯代甲硅烷基)甲基]- 苯并磷杂硅杂英,5,10-二氢-10,10-二甲基-5-苯基- 苯基二甲基氯硅烷 苯基二甲基乙氧基硅 苯基二甲基(2'-甲氧基乙氧基)硅烷 苯基乙酰氧基三甲基硅烷 苯基三辛基硅烷 苯基三甲氧基硅烷