Hydride, Hydrogen, Proton, and Electron Affinities of Imines and Their Reaction Intermediates in Acetonitrile and Construction of Thermodynamic Characteristic Graphs (TCGs) of Imines as a “Molecule ID Card”
摘要:
A series of 61 imines with various typical structures were synthesized, and the thermodynamic affinities (defined as enthalpy changes or redox potentials in this work) of the imines to abstract hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the imines to abstract hydrogen atoms and protons, and the thermodynamic affinities of the hydrogen adducts of the imines to abstract electrons in acetonitrile were determined by using titration calorimetry and electrochemical methods. The pure heterolytic and homolytic dissociation energies of the C = N pi-bond in the imines were estimated. The polarity of the C = N double bond in the imines was examined using a linear free-energy relationship. The idea of a thermodynamic characteristic graph (TCG) of imines as an efficient "Molecule ID Card" was introduced. The TCG can be used to quantitatively diagnose and predict the characteristic chemical properties of imines and their various reaction intermediates as well as the reduction mechanism of the imines. The information disclosed in this work could not only supply a gap of thermodynamics for the chemistry of imines but also strongly promote the fast development of the applications of imines.
Reductive amination of various ketones and aldehydes by transferhydrogenation under aqueous conditions has been developed, by using cyclometallated iridium complexes as catalysts and formate as hydrogen source. The pH value of the solution is shown to be critical for a high catalytic chemoselectivity and activity, with the best pH value being 4.8. In comparison with that in organic solvents, the reductive
An iridiumcatalyst enables the reductive amination of carbonylgroups with unprecedented substrate scope, selectivity, and activity using formic acid as the hydrogen source (see scheme). The catalyst system provides significant improvement over commonly used boron hydrides.
Simple, efficient and reusable Pd–NHC catalysts for hydroamination
作者:Qian Chen、Lanlan Lv、Meng Yu、Yanhui Shi、Yuling Li、Guangsheng Pang、Changsheng Cao
DOI:10.1039/c3ra42990c
日期:——
series of chelating NHC–palladium complexes with different alkane-bridges of the type Pd[NHC–(CH2)n–NHC]X2 (X = Br or Cl, n = 2–4) were synthesized, where NHC is a triazolyl-N-heterocyclic carbene donor ligand. The bromide complexes with n = 2 and 3 were characterized by X-ray crystallography. The effects of the length of the bridge and halide ligand on the catalytic reactivity in the hydroamination reaction
The present invention relates to an iridium-based catalyst compound for hydrogenating reducible moieties, especially imines and iminiums, the catalyst compounds being defined by the formulas: where ring B is either itself polycyclic, or ring B together with R is polycyclic. The catalysts of the invention are particularly effective in reductive amination procedures
10
which involve the in situ generation of the imine or iminium under reductive hydrogenative conditions.
Synthesis of tertiary arylamines: Lewis acid-catalyzed direct reductive N-alkylation of secondary amines with ketones through an alternative pathway
作者:Onkar S. Nayal、Maheshwar S. Thakur、Vinod Bhatt、Manoranjan Kumar、Neeraj Kumar、Bikram Singh、Upendra Sharma
DOI:10.1039/c6cc04381j
日期:——
We report herein a highly efficient, tin(II)/PMHS catalyzed reductive N-alkylation of arylamines with ketones affording tertiary arylamines. Very wide substrate scope was observed for current catalytic method as all six...