摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

7-O-methylsilybin B | 1420659-27-3

中文名称
——
中文别名
——
英文名称
7-O-methylsilybin B
英文别名
7-O-Methylsilybin B;(2R,3R)-3,5-dihydroxy-2-[(2S,3S)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]-7-methoxy-2,3-dihydrochromen-4-one
7-O-methylsilybin B化学式
CAS
1420659-27-3
化学式
C26H24O10
mdl
——
分子量
496.471
InChiKey
NCHOYOLHWYWSBD-CPPMQADQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.8
  • 重原子数:
    36
  • 可旋转键数:
    5
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.27
  • 拓扑面积:
    144
  • 氢给体数:
    4
  • 氢受体数:
    10

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    silybin B碘甲烷potassium carbonate 作用下, 以 丙酮 为溶剂, 反应 3.5h, 以33%的产率得到7-O-methylsilybin B
    参考文献:
    名称:
    Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle
    摘要:
    Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite's 4-5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans. (C) 2013 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2013.04.017
点击查看最新优质反应信息

文献信息

  • Enhanced bioactivity of silybin B methylation products
    作者:Arlene A. Sy-Cordero、Tyler N. Graf、Scott P. Runyon、Mansukh C. Wani、David J. Kroll、Rajesh Agarwal、Scott J. Brantley、Mary F. Paine、Stephen J. Polyak、Nicholas H. Oberlies
    DOI:10.1016/j.bmc.2012.11.035
    日期:2013.2
    Flavonolignans from milk thistle (Silybum marianum) have been investigated for their cellular modulatory properties, including cancer chemoprevention and hepatoprotection, as an extract (silymarin), as partially purified mixtures (silibinin and isosilibinin), and as pure compounds (a series of seven isomers). One challenge with the use of these compounds in vivo is their relatively short half-life due to conjugation, particularly glucuronidation. In an attempt to generate analogues with improved in vivo properties, particularly reduced metabolic liability, a semi-synthetic series was prepared in which the hydroxy groups of silybin B were alkylated. A total of five methylated analogues of silybin B were synthesized using standard alkylation conditions (dimethyl sulfate and potassium carbonate in acetone), purified using preparative HPLC, and elucidated via spectroscopy and spectrometry. Of the five, one was monomethylated (3), one was dimethylated (4), two were trimethylated (2 and 6), and one was tetramethylated (5). The relative potency of all compounds was determined in a 72 h growth-inhibition assay against a panel of three prostate cancer cell lines (DU-145, PC-3, and LNCaP) and a human hepatoma cell line (Huh7.5.1) and compared to natural silybin B. Compounds also were evaluated for inhibition of both cytochrome P450 2C9 (CYP2C9) activity in human liver microsomes and hepatitis C virus infection in Huh7.5.1 cells. The monomethyl and dimethyl analogues were shown to have enhanced activity in terms of cytotoxicity, CYP2C9 inhibitory potency, and antiviral activity (up to 6-fold increased potency) compared to the parent compound, silybin B. In total, these data suggested that methylation of flavonolignans can increase bioactivity. (C) 2012 Elsevier Ltd. All rights reserved.
  • Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle
    作者:Hanan S. Althagafy、Tyler N. Graf、Arlene A. Sy-Cordero、Brandon T. Gufford、Mary F. Paine、Jessica Wagoner、Stephen J. Polyak、Mitchell P. Croatt、Nicholas H. Oberlies
    DOI:10.1016/j.bmc.2013.04.017
    日期:2013.7
    Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite's 4-5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans. (C) 2013 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

红景天灵 水飞蓟素B2 水飞蓟素A,B 水飞蓟宾磷脂酰胆碱(SPC) 水飞蓟宾 水飞蓟宾 水飞木质灵 次大风子素 异水飞蓟宾B 亚聚丙基二醇,甲苯二异氰酸酯,羟基丙基甲丙烯酰酸酯聚合物 4-[(2R)-5,7-二羟基-2-[(2R)-2-(4-羟基-3-甲氧基苯基)-3-[(4-羟基-4-氧代丁酰基)氧基甲基]-2,3-二氢-1,4-苯并二氧杂环己-7-基]-4-氧代色满-3-基]氧基-4-氧代丁酸 3,7-二羟基-2-(1,4-苯并二恶烷-6-基)色满-4-酮 3,7-二羟基-2-((2,3-二苯基)-1,4-苯并二恶烷-6-基)色满-4-酮 2,3-脱氢水飞蓟宾B 2,3-脱氢水飞蓟宾A 3,4-methylene-dioxybenzoic acid mono[[2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-6-(2,3-dihydro-3,5,7-trihydroxy-4-oxo-4H-1-benzopyran-2-yl)-1,4-benzodioxin-2-yl]methyl] ester 5'-methoxyhydnocarpin-D 5'-methoxyhydnocarpin sinaicitin-D Silybin 23-O-β-lactoside 3,4-dimethoxybenzoic acid mono[[2,3-dihydro-3-(4-hydroxy-3-methoxy phenyl)-6-(2,3-dihydro-3,5,7-trihydroxy-4-oxo-4H-1-benzopyran-2-yl)-1,4-benzodioxin-2-yl]methyl] ester 3,5-dinitrobenzoic acid mono[[2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-6-(2,3-dihydro-3,5,7-trihydroxy-4-oxo-4H-1-benzopyran-2-yl)-1,4-benzodioxin-2-yl]methyl] ester 3-chlorobenzoic acid mono[[2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-6-(2,3-dihydro-3,5,7-trihydroxy-4-oxo-4H-1-benzopyran-2-yl)-1,4-benzodioxin-2-yl]methyl] ester sodium silybin-23-O-(4-nitrophenyl)-phosphate 23-chloro-2,3-dehydrosilybin 5,7,20-O-trimethyl-2,3-dehydrosilybin 1,3,11a-trihydroxy-9-(3,5,7-trihydroxy-4H-1-benzopyran-4-on-2-yl)-5a-(3,4-dihydroxyphenyl)-5,6,11-hexahydro-5,6,11-trioxanaphthacene-12-one (+/-)-sinaiticin (10S,11S)-hydnocarpin D (2R,3R,10S,11R)-silybin silybin B 20-O-sulfate (2R,3S,10S,11S)-silybin silybin A 20-O-sulfate (2R,3S,10R,11R)-silybin (2SR*,2'R*,3'R*)-2-<2-(4-Benzyloxy-3-methoxyphenyl)-3-hydroxymethyl-1,4-benzodioxan-6-yl>-2,3-dihydro-5,7-dihydroxy-4H-benzopyran-4-one hydnocarpin-D peracetate hydnocarpin (+/-)-5'-methoxyhydnocarpin-D 5-deoxy-3-hydroxyhydnocarpin-D 3-O-pentyl-2,3-dehydrosilibinin 7-O-dihydroferuloylsilibinin silymarin Legalon SIL disodium;(2R,3R)-3-(3-carboxypropanoyloxy)-2-[(2R,3R)-2-(3-carboxypropanoyloxymethyl)-3-(3-methoxy-4-oxidophenyl)-2,3-dihydro-1,4-benzodioxin-6-yl]-7-hydroxy-4-oxo-2,3-dihydrochromen-5-olate 2-[2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-1,4-benzodioxin-6-yl]-2,3-dihydro-3,5-dihydroxy-7-(cis,cis-9,12-octadecadienoyl)-oxy-4H-1-benzopyran-4-one 2-[2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-((cis,cis-9,12-octadecadienoyl)-oxymethyl)-1,4-benzodioxin-6-yl]-2,3-dihydro-3,5,7-trihydroxy-4H-1-benzopyran-4-one 2-(2,3-dihydro-benzo[1,4]dioxan-6-yl)-3-hydroxy-7-benzyloxy-benzopyran-4-one 6,8-Dichloro-2-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-chromen-4-one 7-Chloro-2-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-chroman-4-one 2-<2-2-(N1,N1-Diethylaminoethyl)carboxamido>-1,4-benzodioxane-7-yl>-4H-1-benzopyran-4-one