A novel series of benzamides with a hexahydro-1,4-diazepine or hexahydroazepine ring in the amine moiety were prepared, and their binding affinities for 5-HT3 and dopamine D2 receptors were evaluated. The R isomer of the 1-ethyl-4-methylhexahydro-1,4-diazepinylbenzamide (R)-22 had potent affinity for both receptors. The R-enantiomer of the corresponding 1-ethylhexahydroazepinylbenzamide 28 showed potent
Novel zwitterion polygalactomannan ether derivatives and a method for
申请人:National Starch and Chemical Corporation
公开号:US04276414A1
公开(公告)日:1981-06-30
Zwitterion polygalactomannan ether derivatives are prepared by reacting a polygalactomannan gum, such as guar gum or locust bean gum, with N-(2-haloethyl)iminobis(methylene)diphosphonic acid or with a N-(alkyl)-N-(2-haloethyl)aminomethylphosphonic acid. The derivatives contain aminophosphonic acid groups (or their salts) as zwitterion substituents which consist of either one or two anionic methylene phosphonic acid groups bound to a cationic nitrogen. Modified derivatives containing non-ionic, anionic, cationic, or cationogenic substituents may also be prepared.
Synthesis and Structure-Activity Relationships of 4-Amino-5-chloro-N-(1,4-dialkylhexahydro-1,4-diazepin-6-yl)-2-methoxybenzamide Derivatives, Novel and Potent Serotonin 5-HT3 and Dopamine D2 Receptors Dual Antagonist.
affinity along with a potent5-HT3receptor binding affinity. Among the compounds, 5-chloro-N-(1-ethyl-4-methylhexahydro-1,4-diazepin-6-yl)-2-methoxy-4-methylaminobenzamide (82), 5-bromo (110), and 5-iodo (112) analogues exhibited a much higher affinity for the dopamine D2 receptor than that of metoclopramide (IC50=17.5-61.0 nM vs. 483 nM). In particular, 82 showed a potentantagonistic activity for both
Hepatocellular Toxicity and Pharmacological Effect of Amiodarone and Amiodarone Derivatives
作者:Katri Maria Waldhauser、Michael Török、Huy-Riem Ha、Urs Thomet、Daniel Konrad、Karin Brecht、Ferenc Follath、Stephan Krähenbühl
DOI:10.1124/jpet.106.108993
日期:2006.12
and annexin V/propidium iodide staining. The effect of the three least toxic amiodarone analogs on the human ether-a-go-go-related gene (hERG) channel was compared with amiodarone. Amiodarone, B2-O-acetate, and B2-O-Et-N-dipropyl (each 10 microM) significantly reduced the hERG tail current amplitude, whereas 10 microM B2-O-Et displayed no detectableeffect on hERG outward potassium currents. In conclusion