摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

荧光增白剂 CBS-X | 38775-22-3

中文名称
荧光增白剂 CBS-X
中文别名
荧光增白剂351;荧光增白剂CBS;4,4'-双(2-磺酸基苯乙烯基)-1,1'-联苯;荧光增白剂CBS-X;4,4"-双(2-磺酸基苯乙烯基)-1,1"-联苯;荧光增白剂 351;FBA 351
英文名称
4,4'-Bis(2-sulfostyryl)biphenyl
英文别名
4-4'-Bis(2-sulfostyryl)biphenyl;2-[2-[4-[4-[2-(2-sulfophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonic acid
荧光增白剂 CBS-X化学式
CAS
38775-22-3
化学式
C28H22O6S2
mdl
——
分子量
518.611
InChiKey
SQAKQVFOMMLRPR-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 密度:
    1.414

计算性质

  • 辛醇/水分配系数(LogP):
    5.6
  • 重原子数:
    36
  • 可旋转键数:
    7
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    126
  • 氢给体数:
    2
  • 氢受体数:
    6

制备方法与用途

荧光增白剂的种类

荧光增白剂 CBS-X 是洗涤剂中最优秀的增白剂,外观为白色粉末,可溶于水,呈微青色调,并耐漂白粉。主要用于毛被和动物蛋白纤维,用量约为 0.5g/L。

荧光增白剂根据化学结构式不同可以分为以下几类:

  1. 二苯乙烯型荧光增白剂:如 CBS-X、FB、EBF 和 VBL 等。这类荧光增白剂主要用于棉纤维及某些合成纤维、造纸和制皂工业,具有蓝色荧光。
  2. 香豆素型:含有香豆酮基本结构,用于赛璐珞和聚氯乙烯塑料等,如 WS 具有较强的蓝色荧光。
  3. 吡唑啉型:主要用于羊毛、聚酰胺和腈纶纤维,如 WG 具有绿色荧光。
  4. 苯并氧氮型:适用于涤纶、锦纶等纤维及聚氯乙烯和聚苯乙烯塑料等,如 DT 具有红色荧光。
  5. 萘二甲酰亚胺型:主要用于涤纶、腈纶和锦纶纤维,如 AT 具有蓝色荧光。

以下是几种荧光增白剂的结构式:

图1 展示了荧光增白剂 BA、DT 和 AT 的化学结构式。

作用机理

荧光增白剂通过光学上的补色原理来实现增白效果。泛黄物质在经过荧光增白剂处理后,不仅能反射可见光,还能吸收紫外光(波长为300~400nm)并转变为具有紫蓝色的可见光(波长为400~500nm),从而反射出来。黄色和蓝色互为补色,因此抵消了物质原有的黄色,并增加了反射光强度,使被处理物变得洁白悦目。

以上信息由 Chemicalbook 的晓楠编辑整理。

作用与用途

荧光增白剂能够提高物质的白度和光泽,广泛应用于纺织、造纸、塑料、皮革、肥皂、合成洗涤剂及其他日用品工业部门。值得注意的是,荧光增白剂不会损伤织物的色泽和强度,但对于底色较深的织物或纸张等,未经漂白直接使用增白剂处理,效果可能不佳。

毒性

荧光增白剂会极大削弱免疫力及伤口愈合能力。一旦在人体中蓄积过量,除了对肝脏等重要器官造成严重危害外,还会诱发细胞癌变,成为潜在的致癌因素之一。一旦与食品直接接触并污染到食品上,会对食用者的健康造成严重威胁。

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    荧光增白剂 CBS-X 、 以 二氯甲烷 为溶剂, 反应 24.0h, 以95%的产率得到
    参考文献:
    名称:
    手性咪唑啉酮有机催化剂主链离子聚合物的合成及其在不对称Diels-Alder反应中的应用
    摘要:
    通过手性咪唑烷酮二聚体与二磺酸的加聚反应,成功合成了在聚合物主链中包含手性咪唑烷酮部分的主链离子聚合物。在反式肉桂醛和1,3-环戊二烯之间的不对称Diels-Alder反应中研究了这些聚合物的有机催化活性。发现聚合物的催化性能对二磺酸酯单元和咪唑烷酮二聚体的化学结构敏感。使用这些非均相聚合手性有机催化剂,对内的对映选择性高达99%获得异构体。该结果高于在均相溶液中用相应的单体和二聚体对应物获得的结果。回收聚合物手性有机催化剂并重复使用数次,以保持其高对映选择性。
    DOI:
    10.1002/adsc.201701016
  • 作为产物:
    描述:
    2,2″-([1,1′-biphenyl]-4,4′-diyldi-2,1-ethenediyl)bis-benzenesulfonic acid disodium salt 生成 荧光增白剂 CBS-X
    参考文献:
    名称:
    Strong Intermolecular Electronic Coupling of Chromophores Confined in Hydrogen-Bonded Frameworks
    摘要:
    Guanidinium organodisulfonate (GDS) hydrogen-bonded frameworks constructed from “tetris-shaped” ortho-substituted disulfonated stilbene derivatives display crystal architectures in which the stilbenes serve as pillars that connect opposing guanidinium sulfonate (GS) sheets in a continuously layered architecture while guiding the organization of the stilbene residues into packing motifs that produce unique optical properties. The constraints imposed by ortho-substitution result in a heretofore unreported topology of the pillars projecting from the two-dimensional GS sheet, while the dense packing of stilbene constituents, confined between the GS sheets, results in strong intermolecular electronic coupling. Stilbene 420 (2,2″-([1,1′-biphenyl]-4,4′-diyldi-2,1-ethenediyl)bis-benzenesulfonate) pillars pack in a face-to-face brickwork motif, producing a large bathochromic shift (∼100 nm) of the absorbance and emission spectra relative to stilbene 420 in methanol. The distyrylbenzenedisufonate (2,2′-((1E,1′E)-1,4-phenylenebis(ethene-2,1-diyl))dibenzenesulfonate) pillars, which pack in a face-to-face herringbone motif between the GS sheets, afford both hypsochromic and bathochromic shifts in their absorption spectrum, indicative of an unusually large Davydov splitting. The observation of both bathochromic and hypsochromic shifts can be attributed to the herringbone arrangement, in which both transitions are allowed due to the nonzero vector sum of the transition dipoles in both states. The large magnitude of the Davydov splitting reflects the strong intermolecular coupling between the chromophores, enforced by confinement in the GS framework. The newly discovered GS architectures evoke a new design rule that permits prediction of GS topologies in the case of longer tetris-shaped pillars.
    DOI:
    10.1021/acs.cgd.5b00452
点击查看最新优质反应信息

文献信息

  • Degradation of Fluorescent Whitening Agents in Sunlit Natural Waters
    作者:Johannes B. Kramer、Silvio Canonica、Jürg Hoigné、Jürgen Kaschig
    DOI:10.1021/es950711a
    日期:1996.6.1
    Stilbene-type fluorescent whitening agents (FWAs), such as the distyryl biphenyl (DSBP) and the diaminostilbene types (DAS 1 and DAS 2), are commonly used in detergents and papers. They are not readily biodegradable, but due to their ability to absorb part of the terrestial sunlight, they can be photochemically degraded in natural surface waters. Following a fast preceding photoisomerization, the three compounds are degraded by direct photochemical processes yielding mainly aldehydes and alcohols. Their degradation quantum yields are similar, about 10(-4). Nevertheless, in samples of a eutrophic Swiss lake water, DSBP is photochemically degraded three times faster (t(1/2) = 87 min) in summer noon terrestrial sunlight at 25 degrees C than DAS 1 and DAS 2 (t(1/2) = 278 and 313 min) because of a higher rate of sunlight absorption by the DSBP isomer mixture. All FWAs are degraded faster if the oxygen concentration is increased. Dissolved natural organic material partly inhibits the degradation of DSBP in the reaction with molecular oxygen. The behavior of these compounds illustrates the influence of a preceding isomer equilibrium on degradation rate coefficients.
  • Synthesis of Main-Chain Ionic Polymers of Chiral Imidazolidinone Organocatalysts and Their Application to Asymmetric Diels-Alder Reactions
    作者:Naoki Haraguchi、Nagisa Takenaka、Aisyah Najwa、Yuta Takahara、Mah Kar Mun、Shinichi Itsuno
    DOI:10.1002/adsc.201701016
    日期:2018.1.4
    Mainchain ionic polymers incorporating chiral imidazolidinone moieties in the polymer main chain were successfully synthesized by the polyaddition reaction of a chiral imidazolidinone dimer with a disulfonic acid. The organocatalytic activities of these polymers were investigated in the asymmetric Diels–Alder reaction between trans‐cinnamaldehyde and 1,3‐cyclopentadiene. The catalytic performance
    通过手性咪唑烷酮二聚体与二磺酸的加聚反应,成功合成了在聚合物主链中包含手性咪唑烷酮部分的主链离子聚合物。在反式肉桂醛和1,3-环戊二烯之间的不对称Diels-Alder反应中研究了这些聚合物的有机催化活性。发现聚合物的催化性能对二磺酸酯单元和咪唑烷酮二聚体的化学结构敏感。使用这些非均相聚合手性有机催化剂,对内的对映选择性高达99%获得异构体。该结果高于在均相溶液中用相应的单体和二聚体对应物获得的结果。回收聚合物手性有机催化剂并重复使用数次,以保持其高对映选择性。
  • Strong Intermolecular Electronic Coupling of Chromophores Confined in Hydrogen-Bonded Frameworks
    作者:Takuji Adachi、David M. Connors、Wenchang Xiao、Chunhua Hu、Michael D. Ward
    DOI:10.1021/acs.cgd.5b00452
    日期:2015.7.1
    Guanidinium organodisulfonate (GDS) hydrogen-bonded frameworks constructed from “tetris-shaped” ortho-substituted disulfonated stilbene derivatives display crystal architectures in which the stilbenes serve as pillars that connect opposing guanidinium sulfonate (GS) sheets in a continuously layered architecture while guiding the organization of the stilbene residues into packing motifs that produce unique optical properties. The constraints imposed by ortho-substitution result in a heretofore unreported topology of the pillars projecting from the two-dimensional GS sheet, while the dense packing of stilbene constituents, confined between the GS sheets, results in strong intermolecular electronic coupling. Stilbene 420 (2,2″-([1,1′-biphenyl]-4,4′-diyldi-2,1-ethenediyl)bis-benzenesulfonate) pillars pack in a face-to-face brickwork motif, producing a large bathochromic shift (∼100 nm) of the absorbance and emission spectra relative to stilbene 420 in methanol. The distyrylbenzenedisufonate (2,2′-((1E,1′E)-1,4-phenylenebis(ethene-2,1-diyl))dibenzenesulfonate) pillars, which pack in a face-to-face herringbone motif between the GS sheets, afford both hypsochromic and bathochromic shifts in their absorption spectrum, indicative of an unusually large Davydov splitting. The observation of both bathochromic and hypsochromic shifts can be attributed to the herringbone arrangement, in which both transitions are allowed due to the nonzero vector sum of the transition dipoles in both states. The large magnitude of the Davydov splitting reflects the strong intermolecular coupling between the chromophores, enforced by confinement in the GS framework. The newly discovered GS architectures evoke a new design rule that permits prediction of GS topologies in the case of longer tetris-shaped pillars.
查看更多

同类化合物

(E,Z)-他莫昔芬N-β-D-葡糖醛酸 (E/Z)-他莫昔芬-d5 (4S,5R)-4,5-二苯基-1,2,3-恶噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4R,4''R,5S,5''S)-2,2''-(1-甲基亚乙基)双[4,5-二氢-4,5-二苯基恶唑] (1R,2R)-2-(二苯基膦基)-1,2-二苯基乙胺 鼓槌石斛素 高黄绿酸 顺式白藜芦醇三甲醚 顺式白藜芦醇 顺式己烯雌酚 顺式-桑皮苷A 顺式-曲札芪苷 顺式-二苯乙烯 顺式-beta-羟基他莫昔芬 顺式-a-羟基他莫昔芬 顺式-3,4',5-三甲氧基-3'-羟基二苯乙烯 顺式-1,2-二苯基环丁烷 顺-均二苯乙烯硼酸二乙醇胺酯 顺-4-硝基二苯乙烯 顺-1-异丙基-2,3-二苯基氮丙啶 阿非昔芬 阿里可拉唑 阿那曲唑二聚体 阿托伐他汀环氧四氢呋喃 阿托伐他汀环氧乙烷杂质 阿托伐他汀环(氟苯基)钠盐杂质 阿托伐他汀环(氟苯基)烯丙基酯 阿托伐他汀杂质D 阿托伐他汀杂质94 阿托伐他汀内酰胺钠盐杂质 阿托伐他汀中间体M4 阿奈库碘铵 银松素 铒(III) 离子载体 I 钾钠2,2'-[(E)-1,2-乙烯二基]二[5-({4-苯胺基-6-[(2-羟基乙基)氨基]-1,3,5-三嗪-2-基}氨基)苯磺酸酯](1:1:1) 钠{4-[氧代(苯基)乙酰基]苯基}甲烷磺酸酯 钠;[2-甲氧基-5-[2-(3,4,5-三甲氧基苯基)乙基]苯基]硫酸盐 钠4-氨基二苯乙烯-2-磺酸酯 钠3-(4-甲氧基苯基)-2-苯基丙烯酸酯 重氮基乙酸胆酯酯 醋酸(R)-(+)-2-羟基-1,2,2-三苯乙酯 酸性绿16 邻氯苯基苄基酮 那碎因盐酸盐 那碎因[鹼] 达格列净杂质54 辛那马维林 赤藓型-1,2-联苯-2-(丙胺)乙醇 赤松素 败脂酸,丁基丙-2-烯酸酯,甲基2-甲基丙-2-烯酸酯,2-甲基丙-2-烯酸