摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(4aS,8aR)-Octahydro-isothiochromen-6-one

中文名称
——
中文别名
——
英文名称
(4aS,8aR)-Octahydro-isothiochromen-6-one
英文别名
(4aS,8aR)-1,3,4,4a,5,7,8,8a-octahydroisothiochromen-6-one
(4aS,8aR)-Octahydro-isothiochromen-6-one化学式
CAS
——
化学式
C9H14OS
mdl
——
分子量
170.276
InChiKey
BNQVFEGEUPLQFI-SFYZADRCSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.3
  • 重原子数:
    11
  • 可旋转键数:
    0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.89
  • 拓扑面积:
    42.4
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    (4aS,8aR)-Octahydro-isothiochromen-6-one 生成 trans-2-methylene-6-thiaperhydronaphthalene
    参考文献:
    名称:
    通过键相互作用的4-亚甲基硫代环己烷衍生物的光电子能谱
    摘要:
    描述了4-亚甲基硫代环己烷,4-二氟亚丙基硫代环己烷和反式-2-亚甲基-6-硫代过萘的光电子能谱,并与噻吩环己烯,二氟亚甲基-环己烷和顺式-2-亚甲基-6-硫代过萘进行了比较。
    DOI:
    10.1016/0040-4020(80)80171-2
  • 作为产物:
    描述:
    8,8A-dihydro-7H-isothiochroman-6-one 在 sodium dithionite 、 Aliquat 、 碳酸氢钠 作用下, 以 为溶剂, 生成 (4aS,8aR)-Octahydro-isothiochromen-6-one
    参考文献:
    名称:
    A Spectroscopic Study of Solvent Reorganization Energy:  Dependence on Temperature, Charge Transfer Distance, and the Type of Solute−Solvent Interactions
    摘要:
    The dependence of the free energy gap, Delta G(S-0 --> CT), and of the solvent reorganization energy, lambda(S), on solvent, donor/acceptor separation, and temperature are determined from analyses of the intramolecular charge transfer absorption and emission bands from 1 and 2. The following trends are observed: (a) for either probe molecule, differences in the CT state energies among the various solvents are attended by nearly identical magnitude (but opposite sign) differences in the solvent reorganization energies. This correlation is observed for solvents in which the most significant electrostatic moment is a dipole or a quadrupole. (b) Solvents with nearly zero dipole moments but large quadrupole moments (8-11 D-Angstrom) solvate the CT state as effectively as moderately dipolar solvents (mu approximate to 1-2 D). (c) Larger charge separation distances produce larger solvent reorganization energies in the nonalkane solvents. The ratios of the solvent reorganization energies lambda(S)(2)/lambda(S)(1) are roughly the same in the dipolar and quadrupolar solvents. (d) Changes in both Delta G and lambda(S) upon increasing the temperature are consistent with a decrease in the solvent polarity. The absolute values of the temperature derivatives lie between 0.5 and 2.0 meV/K. In contrast to the correlated variation of Delta G(S-0 CT) and lambda(S) from solvent to solvent (i.e., Delta G(solvent A) - Delta G(solvent B) approximate to -(lambda(S,solvent A) - lambda(S,solvent B)), the ratio (partial derivative lambda(S)/partial derivative T)/(partial derivative Delta G/partial derivative T) similar to -(0.7 - 0.9). A simple continuum model, using dielectric constant data, is unable to reproduce the solvent and temperature dependence of Delta G(S-0 --> CT) and lambda(S). A more detailed molecular model produces reasonable estimates of these two quantities across a wide range of solvents at 300 K but overestimates their temperature variation.
    DOI:
    10.1021/jp993667k
点击查看最新优质反应信息

文献信息

  • A Spectroscopic Study of Solvent Reorganization Energy:  Dependence on Temperature, Charge Transfer Distance, and the Type of Solute−Solvent Interactions
    作者:Peter Vath、Matthew B. Zimmt
    DOI:10.1021/jp993667k
    日期:2000.3.1
    The dependence of the free energy gap, Delta G(S-0 --> CT), and of the solvent reorganization energy, lambda(S), on solvent, donor/acceptor separation, and temperature are determined from analyses of the intramolecular charge transfer absorption and emission bands from 1 and 2. The following trends are observed: (a) for either probe molecule, differences in the CT state energies among the various solvents are attended by nearly identical magnitude (but opposite sign) differences in the solvent reorganization energies. This correlation is observed for solvents in which the most significant electrostatic moment is a dipole or a quadrupole. (b) Solvents with nearly zero dipole moments but large quadrupole moments (8-11 D-Angstrom) solvate the CT state as effectively as moderately dipolar solvents (mu approximate to 1-2 D). (c) Larger charge separation distances produce larger solvent reorganization energies in the nonalkane solvents. The ratios of the solvent reorganization energies lambda(S)(2)/lambda(S)(1) are roughly the same in the dipolar and quadrupolar solvents. (d) Changes in both Delta G and lambda(S) upon increasing the temperature are consistent with a decrease in the solvent polarity. The absolute values of the temperature derivatives lie between 0.5 and 2.0 meV/K. In contrast to the correlated variation of Delta G(S-0 CT) and lambda(S) from solvent to solvent (i.e., Delta G(solvent A) - Delta G(solvent B) approximate to -(lambda(S,solvent A) - lambda(S,solvent B)), the ratio (partial derivative lambda(S)/partial derivative T)/(partial derivative Delta G/partial derivative T) similar to -(0.7 - 0.9). A simple continuum model, using dielectric constant data, is unable to reproduce the solvent and temperature dependence of Delta G(S-0 --> CT) and lambda(S). A more detailed molecular model produces reasonable estimates of these two quantities across a wide range of solvents at 300 K but overestimates their temperature variation.
  • The photoelectron spectra of 4-methylene thiacyclohexane derivatives through-bond interaction
    作者:R. Sarneel、C.W. Worrell、P. Pasman、J.W. Verhoeven、G.F. Mes
    DOI:10.1016/0040-4020(80)80171-2
    日期:1980.1
    The photoelectron spectra of 4-methylene thiacyclohexane, 4-difluo romethylene thiacyclohexane and trans-2-methylene-6-thiaperhydronaphthalene are described and compared with thiacyclohexabne, difluoromethylene-cyclo hexane and cis-2-methylene-6-thiaperhydronaphthalene.
    描述了4-亚甲基硫代环己烷,4-二氟亚丙基硫代环己烷和反式-2-亚甲基-6-硫代过萘的光电子能谱,并与噻吩环己烯,二氟亚甲基-环己烷和顺式-2-亚甲基-6-硫代过萘进行了比较。
查看更多

同类化合物

阿普卡林 硫化环戊烷 硫代环己酮 甲基(1,1-二氧化四氢-2h-噻喃-4-基)醋酸盐 四氢硫代吡喃-4-胺盐酸盐 四氢硫代吡喃-4-羰酰氯 四氢硫代吡喃-4-羧酸甲酯 四氢硫代吡喃-4-甲腈 四氢硫代吡喃-4-基甲醇 四氢硫代吡喃-3-甲醛 四氢噻喃-4-醇 四氢噻喃-4-酮肟 四氢噻喃-4-酮 1,1-二氧化物 四氢噻喃-4-酮 四氢噻喃-4-胺 四氢噻喃-4-肼双盐酸盐 四氢噻喃-4-甲醛 四氢-4H-硫代吡喃-4-酮 1-氧化物 四氢-4-氧代-2H-噻喃-3-甲酸甲酯 四氢-3-甲基-2H-噻喃 四氢-3-氧代-6H-噻喃-2-甲酸甲酯 四氢-2H-硫代吡喃-4-醇 1,1-二氧化物 四氢-2H-硫代吡喃-4-羧醛 1,1-二氧化物 四氢-2H-硫代吡喃-4-甲醇 1,1-二氧化物 四氢-2H-硫代吡喃-4-乙醛 四氢-2H-噻喃-4-羧酸甲酯1,1-二氧化物 四氢-2H-噻喃-4-甲酰肼 四氢-2H-噻喃-4-甲腈1,1-二氧化 四氢-2H-噻喃-3-醇1,1-二氧化物 四氢-2H-噻喃-3-羧酸1,1-二氧化物 四氢-(9ci)-2H-硫代吡喃-4-羧酸 噻-4-基甲胺 叔-丁基[(1S,2R)-1-苯甲基-2-羟基-3-[异丁基[(4-硝基苯基)磺酰]氨基]丙基]氨基甲酸酯 二氢-5,5-二甲基-2H-硫基吡喃-3(4H)-酮-1,1-二氧化物 二氢-2H-硫代吡喃-3(4h)-酮 二氢-2H-硫代吡喃-3(4H)-酮-1,1-二氧化物 乙酸四氢-2H-噻喃-2-基酯 n-[四氢-2H-硫代吡喃-4-基]氨基甲酸-1,1-二甲基乙酯 N-甲基四氢-2H-硫代吡喃-4-胺盐酸盐 N-甲基四氢-2H-噻喃-4-胺盐酸盐 N-甲基(四氢硫代吡喃-4-基)甲基胺 9-硫杂二环[3.3.1]壬烷-2,6-二酮 9-硫杂二环[3.3.1]壬烷 8-硫杂二环[3.2.1]辛烷-3-酮 8-硫杂-2,3-二氮杂螺[4.5]癸烷 7-硫杂-2-氮杂螺[3.5]壬烷半草酸酯 7-硫杂-2-氮杂螺[3.5]壬烷7,7-二氧化物 6-氧代四氢-2H-噻喃-2-羧酸 5-硫代-alpha-D-吡喃葡萄糖 5-硫代-alpha-D-吡喃葡萄糖