摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(10,11-dihydro-5H-dibenzo[a,d]cycloheptan-5-yl)-piperazine hydrochloride

中文名称
——
中文别名
——
英文名称
N-(10,11-dihydro-5H-dibenzo[a,d]cycloheptan-5-yl)-piperazine hydrochloride
英文别名
1-(10,11-Dihydro-5H-dibenzo[a,d][7]annulen-5-yl)piperazine hydrochloride;1-(2-tricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaenyl)piperazine;hydrochloride
N-(10,11-dihydro-5H-dibenzo[a,d]cycloheptan-5-yl)-piperazine hydrochloride化学式
CAS
——
化学式
C19H22N2*ClH
mdl
——
分子量
314.858
InChiKey
NORWDWQTFRRLNN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.2
  • 重原子数:
    22
  • 可旋转键数:
    1
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.37
  • 拓扑面积:
    15.3
  • 氢给体数:
    2
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    N-(10,11-dihydro-5H-dibenzo[a,d]cycloheptan-5-yl)-piperazine hydrochloridepotassium carbonate1,8-二氮杂双环[5.4.0]十一碳-7-烯 作用下, 以 甲醇N,N-二甲基甲酰胺 为溶剂, 生成 4-[4-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-piperazin-1-yl]-but-2-yn-1-ol
    参考文献:
    名称:
    Structural Properties of Dibenzosuberanylpiperazine Derivatives for Efficient Reversal of Chloroquine Resistance in Plasmodium chabaudi
    摘要:
    For the purpose of developing chemosensitizers to reverse chloroquine (CQ) resistance in Plasmodium chabaudi in vivo, dibenzosuberanylpiperazine (1-(10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-yl)piperazine) (DSP) and its piperazin-1-yl derivatives were synthesized systematically. DSP hydrochloride (3) was obtained from the reaction of dibenzosuberanyl chloride with piperazine in the presence of 1,8-diazabicyclo[5,4,0]-7-undecene (DBU). To understand the relationship between the substituent patterns of DSP derivatives and their biological activities, 13 hydroxyalkyl or hydroxyalkenyl derivatives were synthesized by an attack of the piperazine secondary amine of 3 on commercially available epoxides in the presence of triethylamine or DBU, and three alkyl or alkynyl derivatives were synthesized by the reactions of 3 with the corresponding organic chlorides in the presence of DBU. In both reactions, the yield was a maximum of 90%. The biological activities of the synthesized compounds were evaluated on the basis of two values: antimalarial activity and reversal activity. The values of antimalarial activities by single administration of 17 test compounds were not effective, being in the range 67-152% on day 4 after infection of Plasmodium chabaudi to mice except for the administration of 3-(dibenzosuberanylpiperazin-1-yl)-1-butene (29, 22%). On the other hand, administration of the seven test compounds (50 mg/kg dose) combined with CQ (3-4 mg/kg) gave high reversal activities, namely, low values (0% on day 4). The effective test compounds were those obtained by introducing the following substituents: 2-hydroxybutyl (24), 2-hydroxyhexen-5-yl (27), 2-hydroxybuten-3-yl (28a), 2-substituted 1-hydroxybuten-3-yl (28b), 4-acetoxybutyn-2-yl (30), 4-hydroxybutyn-2-yl (31), and 3-substituted buten-1-yl (29), which correspond to the nonbulky groups of hydroxyalkyl (C4), hydroxyalkenyl (C4-C6), hydroxyalkynyl (C4), or alkenyl (C4). These results may lead to the development of an approach to developing clinically applicable chemosensitizers for drug-resistant malaria.
    DOI:
    10.1021/jm020379v
  • 作为产物:
    描述:
    哌嗪二苯并环庚烯酮基氯1,8-二氮杂双环[5.4.0]十一碳-7-烯 作用下, 以 甲苯 为溶剂, 以78%的产率得到N-(10,11-dihydro-5H-dibenzo[a,d]cycloheptan-5-yl)-piperazine hydrochloride
    参考文献:
    名称:
    Structural Properties of Dibenzosuberanylpiperazine Derivatives for Efficient Reversal of Chloroquine Resistance in Plasmodium chabaudi
    摘要:
    For the purpose of developing chemosensitizers to reverse chloroquine (CQ) resistance in Plasmodium chabaudi in vivo, dibenzosuberanylpiperazine (1-(10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-yl)piperazine) (DSP) and its piperazin-1-yl derivatives were synthesized systematically. DSP hydrochloride (3) was obtained from the reaction of dibenzosuberanyl chloride with piperazine in the presence of 1,8-diazabicyclo[5,4,0]-7-undecene (DBU). To understand the relationship between the substituent patterns of DSP derivatives and their biological activities, 13 hydroxyalkyl or hydroxyalkenyl derivatives were synthesized by an attack of the piperazine secondary amine of 3 on commercially available epoxides in the presence of triethylamine or DBU, and three alkyl or alkynyl derivatives were synthesized by the reactions of 3 with the corresponding organic chlorides in the presence of DBU. In both reactions, the yield was a maximum of 90%. The biological activities of the synthesized compounds were evaluated on the basis of two values: antimalarial activity and reversal activity. The values of antimalarial activities by single administration of 17 test compounds were not effective, being in the range 67-152% on day 4 after infection of Plasmodium chabaudi to mice except for the administration of 3-(dibenzosuberanylpiperazin-1-yl)-1-butene (29, 22%). On the other hand, administration of the seven test compounds (50 mg/kg dose) combined with CQ (3-4 mg/kg) gave high reversal activities, namely, low values (0% on day 4). The effective test compounds were those obtained by introducing the following substituents: 2-hydroxybutyl (24), 2-hydroxyhexen-5-yl (27), 2-hydroxybuten-3-yl (28a), 2-substituted 1-hydroxybuten-3-yl (28b), 4-acetoxybutyn-2-yl (30), 4-hydroxybutyn-2-yl (31), and 3-substituted buten-1-yl (29), which correspond to the nonbulky groups of hydroxyalkyl (C4), hydroxyalkenyl (C4-C6), hydroxyalkynyl (C4), or alkenyl (C4). These results may lead to the development of an approach to developing clinically applicable chemosensitizers for drug-resistant malaria.
    DOI:
    10.1021/jm020379v
点击查看最新优质反应信息

文献信息

  • Structural Properties of Dibenzosuberanylpiperazine Derivatives for Efficient Reversal of Chloroquine Resistance in <i>Plasmodium chabaudi</i>
    作者:Yumiko Osa、Seiki Kobayashi、Yoko Sato、Yumiko Suzuki、Kouichi Takino、Tsutomu Takeuchi、Yoshiyuki Miyata、Masakazu Sakaguchi、Hiroaki Takayanagi
    DOI:10.1021/jm020379v
    日期:2003.5.1
    For the purpose of developing chemosensitizers to reverse chloroquine (CQ) resistance in Plasmodium chabaudi in vivo, dibenzosuberanylpiperazine (1-(10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-yl)piperazine) (DSP) and its piperazin-1-yl derivatives were synthesized systematically. DSP hydrochloride (3) was obtained from the reaction of dibenzosuberanyl chloride with piperazine in the presence of 1,8-diazabicyclo[5,4,0]-7-undecene (DBU). To understand the relationship between the substituent patterns of DSP derivatives and their biological activities, 13 hydroxyalkyl or hydroxyalkenyl derivatives were synthesized by an attack of the piperazine secondary amine of 3 on commercially available epoxides in the presence of triethylamine or DBU, and three alkyl or alkynyl derivatives were synthesized by the reactions of 3 with the corresponding organic chlorides in the presence of DBU. In both reactions, the yield was a maximum of 90%. The biological activities of the synthesized compounds were evaluated on the basis of two values: antimalarial activity and reversal activity. The values of antimalarial activities by single administration of 17 test compounds were not effective, being in the range 67-152% on day 4 after infection of Plasmodium chabaudi to mice except for the administration of 3-(dibenzosuberanylpiperazin-1-yl)-1-butene (29, 22%). On the other hand, administration of the seven test compounds (50 mg/kg dose) combined with CQ (3-4 mg/kg) gave high reversal activities, namely, low values (0% on day 4). The effective test compounds were those obtained by introducing the following substituents: 2-hydroxybutyl (24), 2-hydroxyhexen-5-yl (27), 2-hydroxybuten-3-yl (28a), 2-substituted 1-hydroxybuten-3-yl (28b), 4-acetoxybutyn-2-yl (30), 4-hydroxybutyn-2-yl (31), and 3-substituted buten-1-yl (29), which correspond to the nonbulky groups of hydroxyalkyl (C4), hydroxyalkenyl (C4-C6), hydroxyalkynyl (C4), or alkenyl (C4). These results may lead to the development of an approach to developing clinically applicable chemosensitizers for drug-resistant malaria.
查看更多