Evidence for Radical-Mediated Catalysis by HppE: A Study Using Cyclopropyl and Methylenecyclopropyl Substrate Analogues
摘要:
(S)-2-Hydroxypropylphosphonic acid epoxidase (HppE) is an unusual mononuclear iron enzyme that catalyzes the oxidative epoxidation of (S)-2-hydroxypropylphosphonic acid ((S)-HPP) in the biosynthesis of the antibiotic fosfomycin. HppE also recognizes (R)-2-hydroxypropylphosphonic acid ((R)-HPP) as a substrate and converts it to 2-oxo-propylphosphonic acid. To probe the mechanisms of these HppE-catalyzed oxidations, cyclopropyl- and methylenecyclopropyl-containing compounds were synthesized and studied as radical clock substrate analogues. Enzymatic assays indicated that the (S)- and (R)-isomers of the cyclopropyl-containing analogues were efficiently converted to epoxide and ketone products by HppE, respectively. In contrast, the ultrafast methylenecyclopropyl-containing probe inactivated HppE, consistent with a rapid radical-triggered ring-opening process that leads to enzyme inactivation. Taken together, these findings provide, for the first time, experimental evidence for the involvement of a C2-centered radical intermediate with a lifetime on the order of nanoseconds in the HppE-catalyzed oxidation of (R)-HPP.
Evidence for Radical-Mediated Catalysis by HppE: A Study Using Cyclopropyl and Methylenecyclopropyl Substrate Analogues
摘要:
(S)-2-Hydroxypropylphosphonic acid epoxidase (HppE) is an unusual mononuclear iron enzyme that catalyzes the oxidative epoxidation of (S)-2-hydroxypropylphosphonic acid ((S)-HPP) in the biosynthesis of the antibiotic fosfomycin. HppE also recognizes (R)-2-hydroxypropylphosphonic acid ((R)-HPP) as a substrate and converts it to 2-oxo-propylphosphonic acid. To probe the mechanisms of these HppE-catalyzed oxidations, cyclopropyl- and methylenecyclopropyl-containing compounds were synthesized and studied as radical clock substrate analogues. Enzymatic assays indicated that the (S)- and (R)-isomers of the cyclopropyl-containing analogues were efficiently converted to epoxide and ketone products by HppE, respectively. In contrast, the ultrafast methylenecyclopropyl-containing probe inactivated HppE, consistent with a rapid radical-triggered ring-opening process that leads to enzyme inactivation. Taken together, these findings provide, for the first time, experimental evidence for the involvement of a C2-centered radical intermediate with a lifetime on the order of nanoseconds in the HppE-catalyzed oxidation of (R)-HPP.
A general preparation of chiral ruthenium(II) catalysts and the homogeneous enantioselective hydrogenation of prochiral olefins and keto groups are presented. Some applications to the synthesis of biologically active compounds are reported. (C) 1998 Elsevier Science S.A. All rights reserved.
Evidence for Radical-Mediated Catalysis by HppE: A Study Using Cyclopropyl and Methylenecyclopropyl Substrate Analogues
作者:Hui Huang、Wei-chen Chang、Pei-Jing Pai、Anthony Romo、Steven O. Mansoorabadi、David H. Russell、Hung-wen Liu
DOI:10.1021/ja3078126
日期:2012.10.3
(S)-2-Hydroxypropylphosphonic acid epoxidase (HppE) is an unusual mononuclear iron enzyme that catalyzes the oxidative epoxidation of (S)-2-hydroxypropylphosphonic acid ((S)-HPP) in the biosynthesis of the antibiotic fosfomycin. HppE also recognizes (R)-2-hydroxypropylphosphonic acid ((R)-HPP) as a substrate and converts it to 2-oxo-propylphosphonic acid. To probe the mechanisms of these HppE-catalyzed oxidations, cyclopropyl- and methylenecyclopropyl-containing compounds were synthesized and studied as radical clock substrate analogues. Enzymatic assays indicated that the (S)- and (R)-isomers of the cyclopropyl-containing analogues were efficiently converted to epoxide and ketone products by HppE, respectively. In contrast, the ultrafast methylenecyclopropyl-containing probe inactivated HppE, consistent with a rapid radical-triggered ring-opening process that leads to enzyme inactivation. Taken together, these findings provide, for the first time, experimental evidence for the involvement of a C2-centered radical intermediate with a lifetime on the order of nanoseconds in the HppE-catalyzed oxidation of (R)-HPP.