Anti-AIDS agents 85. Design, synthesis, and evaluation of 1R,2R-dicamphanoyl-3,3-dimethyldihydropyrano-[2,3-c]xanthen-7(1H)-one (DCX) derivatives as novel anti-HIV agents
摘要:
In this study, 1R,2R-dicamphanoyl-3,3-dimethydihydropyrano[2,3-c]xanthen-7(1H)-one (DCX) derivatives were designed and synthesized as novel anti-HIV agents against both wild-type and non-nucleoside reverse transcriptase (RT) inhibitor-resistant HIV-1 (RTMDR-1) strains. Twenty-four DCX analogs (6-29) were synthesized and evaluated against the non-drug-resistant HIV-1 NL4-3 strain, and selected analogs were also screened for their ability to inhibit the RTMDR-1 strain. Compared with the control 2-ethyl-3',4'-di-O-(-)-camphanoyl-2',2'-dimethyldihydropyrano[2,3-f]chromone (2-EDCP, 2), one of the best anti-HIV coumarin derivatives in our prior study, three DCX compounds (7, 12, and 22) showed better activity against both HIV strains with an EC50 range of 0.062-0.081 mu M, and five additional compounds (8, 11, 16, 18, and 21) exhibited comparable anti-HIV potency. Six DCX analogs (7, 11-12, 18, and 21-22) also showed enhanced selectivity index (SI) values in comparison to the control. Structure-activity relationship (SAR) information suggested that the extended conjugated system of the pyranoxanthone skeleton facilitates the interaction of the small DCX molecule within the viral binding pocket, consequently leading to enhanced anti-HIV activity and selectivity. Compared to DCP compounds, DCX analogs are a more promising new class of anti-HIV agents. (C) 2011 Elsevier Masson SAS. All rights reserved.
Upregulation of phosphoglycerate mutase 1 (PGAM1) has been identified as one common phenomenon in a variety of cancers. Inhibition of PGAM1 provides a new promising therapeutic strategy for cancer treatment. Herein, based on our previous work, a series of new N-xanthone benzenesulfonamides were discovered as novel PGAM1 inhibitors. The representative molecule 15h, with an IC50 of 2.1 μM, showed an enhanced PGAM1 inhibitory activity and higher enzyme inhibitory specificity compared to PGMI-004A, as well as a slightly improved antiproliferative activity.
based on molecular similarity strategy. Incorporation of nitrate into 1,3-dioxyxanthones with electron-donating groups at 6–8 position brought about synergistic anticancer effect. Among them, compound 4g-4 was confirmed the most active agent against HepG-2 cells growth with an IC50 of 0.33 ± 0.06 μM. It dose-dependently increased intramolecular NO levels. This activity was attenuated by either NO scavenger
Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion
作者:Gao-Jie Ye、Tian Lan、Zhi-Xin Huang、Xiao-Ning Cheng、Chao-Yun Cai、Sen-Miao Ding、Min-Li Xie、Bo Wang
DOI:10.1016/j.ejmech.2019.05.045
日期:2019.9
cytotoxicity assays showed that most compounds were low-toxic to human normal hepatocyte cell line (LO2). These novel xanthone triazole derivatives exhibited dual therapeutic effects of α-glucosidase inhibition and glucose uptake promotion, thus they could be use as antidiabeticagents for developing novel drugs against type 2 diabetes.