Novel Selective Inhibitors of the Zinc Plasmodial Aminopeptidase PfA-M1 as Potential Antimalarial Agents
摘要:
Proteases that are expressed during the erythocytic stage of Plasmodium falciparum are newly explored drug targets for the treatment of malaria. We report here the discovery of potent inhibitors of PfA-M1, a metallo-aminopeptidase of the parasite. These compounds are based on a malonic hydroxamic template and present a very good selectivity toward neutral aminopeptidase (APN-CD13), a related protease in mammals. Structure-activity relationships in these series are described. Further optimization of the best inhibitor yielded a nanomolar, selective inhibitor of PfA-M1. This inhibitor displays good physicochemical and pharmacokinetic properties and a promising antimalarial activity.
Novel Selective Inhibitors of the Zinc Plasmodial Aminopeptidase PfA-M1 as Potential Antimalarial Agents
摘要:
Proteases that are expressed during the erythocytic stage of Plasmodium falciparum are newly explored drug targets for the treatment of malaria. We report here the discovery of potent inhibitors of PfA-M1, a metallo-aminopeptidase of the parasite. These compounds are based on a malonic hydroxamic template and present a very good selectivity toward neutral aminopeptidase (APN-CD13), a related protease in mammals. Structure-activity relationships in these series are described. Further optimization of the best inhibitor yielded a nanomolar, selective inhibitor of PfA-M1. This inhibitor displays good physicochemical and pharmacokinetic properties and a promising antimalarial activity.
Novel Selective Inhibitors of the Zinc Plasmodial Aminopeptidase PfA-M1 as Potential Antimalarial Agents
作者:Marion Flipo、Terence Beghyn、Virginie Leroux、Isabelle Florent、Benoit P. Deprez、Rebecca F. Deprez-Poulain
DOI:10.1021/jm061169b
日期:2007.3.1
Proteases that are expressed during the erythocytic stage of Plasmodium falciparum are newly explored drug targets for the treatment of malaria. We report here the discovery of potent inhibitors of PfA-M1, a metallo-aminopeptidase of the parasite. These compounds are based on a malonic hydroxamic template and present a very good selectivity toward neutral aminopeptidase (APN-CD13), a related protease in mammals. Structure-activity relationships in these series are described. Further optimization of the best inhibitor yielded a nanomolar, selective inhibitor of PfA-M1. This inhibitor displays good physicochemical and pharmacokinetic properties and a promising antimalarial activity.