A Three-Component Mannich-Type Reaction for Selective Tyrosine Bioconjugation
摘要:
A new selective bioconjugation reaction is described for the modification of tyrosine residues on protein substrates. The reaction uses imines formed in situ from aldehydes and electron-rich anilines to modify phenolic side chains through a Mannich-type electrophilic aromatic substitution pathway. The reaction takes place under mild pH and temperature conditions and can modify protein substrates at concentrations as low as 20 muM. Using an efficient fluorescence-based assay, we demonstrated the reaction using a number of aldehydes and protein targets. Importantly, proteins lacking surface-accessible tyrosines remained unmodified. It was also demonstrated that enzymatic activity is preserved under the mild reaction conditions. This strategy represents one of the first carbon-carbon bond-forming reactions for protein modification and provides an important complement to more commonly used lysine- and cysteine-based methods.
Practical Synthetic Route to Functionalized Rhodamine Dyes
作者:Trung Nguyen、Matthew B. Francis
DOI:10.1021/ol035135z
日期:2003.9.1
[reaction: see text] An efficient method for the synthesis of functionalized rhodamine derivatives has been developed. Multigram quantities of these water-soluble fluorophores can be prepared from inexpensive precursors and purified without the use of chromatography. A series of protein-reactive functional groups has been installed through subsequent reactions, providing materials for biomolecule modification
A Three-Component Mannich-Type Reaction for Selective Tyrosine Bioconjugation
作者:Neel S. Joshi、Leanna R. Whitaker、Matthew B. Francis
DOI:10.1021/ja0439017
日期:2004.12.1
A new selective bioconjugation reaction is described for the modification of tyrosine residues on protein substrates. The reaction uses imines formed in situ from aldehydes and electron-rich anilines to modify phenolic side chains through a Mannich-type electrophilic aromatic substitution pathway. The reaction takes place under mild pH and temperature conditions and can modify protein substrates at concentrations as low as 20 muM. Using an efficient fluorescence-based assay, we demonstrated the reaction using a number of aldehydes and protein targets. Importantly, proteins lacking surface-accessible tyrosines remained unmodified. It was also demonstrated that enzymatic activity is preserved under the mild reaction conditions. This strategy represents one of the first carbon-carbon bond-forming reactions for protein modification and provides an important complement to more commonly used lysine- and cysteine-based methods.