Antineoplastic Agents. 509. Synthesis of Fluorcombstatin Phosphate and Related 3-Halostilbenes,1
摘要:
The present SAR study of combretastatin A-3 (3a) focused on replacement of the 3-hydroxyl group by a series of halogens. That approach with Z-stilbenes resulted in greatly enhanced (> 10-100-fold) cancer cell growth inhibition against a panel of human cancer cell lines and the murine P388 lymphocytic leukemia cell line. Synthesis of the 3-fluoro-Z-stilbene designated fluorcombstatin (11a) and its potassium 3'-O-phosphate derivative (16c) by the route 7 -> 8a -> 11a -> 14 -> 16c illustrates the general synthetic pathway. The 3'-O-phosphoric acid ester (15) of 3-bromo-Z-stilbene 13a was also converted to representative cation salts to evaluate the potential for improved aqueous solubility, and the potassium salt (16 mg/mL in water) proved most useful. The fluoro (11a), chloro (12a), and bromo (13a) halocombstatins were nearly equivalent to combretastatin A-4 (1a) as inhibitors of tubulin polymerization and of the binding of colchicine to tubulin. The tubulin binding in cell-free systems was also retained in human umbilical vein endothelial cells. All three halocombstatins retained the powerful human cancer cell line inhibitory activity of combretastatin A-4 (la) and proved superior to combretastatin A-3 (3a). In addition, the halocombstatins targeted Gram-positive bacteria and Cryptococcus neoformans.
Antineoplastic Agents. 509. Synthesis of Fluorcombstatin Phosphate and Related 3-Halostilbenes,1
摘要:
The present SAR study of combretastatin A-3 (3a) focused on replacement of the 3-hydroxyl group by a series of halogens. That approach with Z-stilbenes resulted in greatly enhanced (> 10-100-fold) cancer cell growth inhibition against a panel of human cancer cell lines and the murine P388 lymphocytic leukemia cell line. Synthesis of the 3-fluoro-Z-stilbene designated fluorcombstatin (11a) and its potassium 3'-O-phosphate derivative (16c) by the route 7 -> 8a -> 11a -> 14 -> 16c illustrates the general synthetic pathway. The 3'-O-phosphoric acid ester (15) of 3-bromo-Z-stilbene 13a was also converted to representative cation salts to evaluate the potential for improved aqueous solubility, and the potassium salt (16 mg/mL in water) proved most useful. The fluoro (11a), chloro (12a), and bromo (13a) halocombstatins were nearly equivalent to combretastatin A-4 (1a) as inhibitors of tubulin polymerization and of the binding of colchicine to tubulin. The tubulin binding in cell-free systems was also retained in human umbilical vein endothelial cells. All three halocombstatins retained the powerful human cancer cell line inhibitory activity of combretastatin A-4 (la) and proved superior to combretastatin A-3 (3a). In addition, the halocombstatins targeted Gram-positive bacteria and Cryptococcus neoformans.
Antineoplastic Agents. 509. Synthesis of Fluorcombstatin Phosphate and Related 3-Halostilbenes<sup>,1</sup>
作者:George R. Pettit、Mathew D. Minardi、Heidi J. Rosenberg、Ernest Hamel、Michael C. Bibby、Sandie W. Martin、M. Katherine Jung、Robin K. Pettit、Timothy J. Cuthbertson、Jean-Charles Chapuis
DOI:10.1021/np058038i
日期:2005.10.1
The present SAR study of combretastatin A-3 (3a) focused on replacement of the 3-hydroxyl group by a series of halogens. That approach with Z-stilbenes resulted in greatly enhanced (> 10-100-fold) cancer cell growth inhibition against a panel of human cancer cell lines and the murine P388 lymphocytic leukemia cell line. Synthesis of the 3-fluoro-Z-stilbene designated fluorcombstatin (11a) and its potassium 3'-O-phosphate derivative (16c) by the route 7 -> 8a -> 11a -> 14 -> 16c illustrates the general synthetic pathway. The 3'-O-phosphoric acid ester (15) of 3-bromo-Z-stilbene 13a was also converted to representative cation salts to evaluate the potential for improved aqueous solubility, and the potassium salt (16 mg/mL in water) proved most useful. The fluoro (11a), chloro (12a), and bromo (13a) halocombstatins were nearly equivalent to combretastatin A-4 (1a) as inhibitors of tubulin polymerization and of the binding of colchicine to tubulin. The tubulin binding in cell-free systems was also retained in human umbilical vein endothelial cells. All three halocombstatins retained the powerful human cancer cell line inhibitory activity of combretastatin A-4 (la) and proved superior to combretastatin A-3 (3a). In addition, the halocombstatins targeted Gram-positive bacteria and Cryptococcus neoformans.