2-(4-Carbonylphenyl)benzoxazole inhibitors of CETP: Scaffold design and advancement in HDLc-raising efficacy
摘要:
The development of 2-phenylbenzoxazoles as inhibitors of cholesteryl ester transfer protein (CETP) is described. Initial efforts aimed at engineering replacements for the aniline substructures in the benchmark molecule. Reversing the connectivity of the central aniline lead to a new class of 2-(4-carbonylphenyl)benzoxazoles. Structure-activity studies at the C-7 and terminal pyridine ring allowed for the optimization of potency and HDLc-raising efficacy in this new class of inhibitors. These efforts lead to the discovery of benzoxazole 11v, which raised HDLc by 24 mg/dl in our transgenic mouse PD model. (C) 2010 Elsevier Ltd. All rights reserved.
CETP inhibitors derived from benzoxazole arylamides
申请人:Hunt Julianne A.
公开号:US08445480B2
公开(公告)日:2013-05-21
Compounds having the structure of Formula I1 including pharmaceutically acceptable salts of the compounds, are potent CETP (cholesterol ester transfer protein) inhibitors, and are useful for raising HDL-cholesterol, reducing LDL-cholesterol, and for treating or preventing atherosclerosis Atherosclerosis and its clinical consequences, coronary heart disease (CHD), stroke and penpheral vascular disease, represent a truly enormous burden to the health care systems of the industrialized world In formula I, A-B is an arylamide moiety.
CETP INHIBITORS DERIVED FROM BENZOXAZOLE ARYLAMIDES
申请人:HUNT Julianne A.
公开号:US20100298288A1
公开(公告)日:2010-11-25
Compounds having the structure of Formula I1 including pharmaceutically acceptable salts of the compounds, are potent CETP (cholesterol ester transfer protein) inhibitors, and are useful for raising HDL-cholesterol, reducing LDL-cholesterol, and for treating or preventing atherosclerosis Atherosclerosis and its clinical consequences, coronary heart disease (CHD), stroke and penpheral vascular disease, represent a truly enormous burden to the health care systems of the industrialized world In formula I, A-B is an arylamide moiety
Compounds of Formula I, including pharmaceutically acceptable salts of the compounds, are CETP inhibitors, and are useful for raising HDL-cholesterol, reducing LDL-cholesterol, and for treating or preventing atherosclerosis.