was achieved using the LN-NO architecture, on a label-free platform, and nanostructures with sizes ranging between 50 and 100 nm were well distributed throughout the nanoxide. The detection of the secosteroid was performed at a low potential (0.46 V vs. Ag/AgCl) in a range between 0 and 2.6 × 10−5 mol L−1, with a detection limit of 8.3 × 10−7 mol L−1, which is considerably competitive with similar devices
我们报道了
钙钛矿型LaNiO 3的电催化活性-N氧化物(LN-NO)在碱性溶液中对类
固醇激素的氧化作用。LN-NO是通过Pechini方法合成的,并在973 K下在空气中煅烧2 h。随后,通过高分辨率透射电子显微镜(HR-
TEM),能量色散X射线(EDX),X射线光电子能谱(XPS),X射线衍射仪(XRD)和电
化学对LN-NO材料进行了研究。循环伏安法(CV),方波伏安法(SWV)和电
化学阻抗谱(EIS)等技术。XRD图谱的Rietveld细化表明仅存在LN-NO。在无标记的平台上使用LN-NO结构可实现最佳的电催化活性,并且大小在50到100 nm之间的纳米结构可以很好地分布在整个纳米氧化物中。相对于Ag / AgCl)在0到2.6×10 -5 mol L -1之间,检测极限为8.3×10 -7 mol L -1,与同类设备相比具有相当的竞争力。LN-NO纳米结构无标记平台作为伏安传感器的应用显示出17