Synthesis of Malarial Plasmepsin Inhibitors and Prediction of Binding Modes by Molecular Dynamics Simulations
摘要:
A series of inhibitors of the malarial aspartic proteases Plm I and II have been synthesized with L-mannitol as precursor. These inhibitors are characterized by either a diacylhydrazine or a five-membered oxadiazole ring replacing backbone amide functionalities. Molecular dynamics simulations were applied in the design process. The computationally predicted Plm II K-i values were generally in excellent agreement with the biological results. The diacylhydrazine was found to be superior over the oxadiazole as an amide bond replacement in the Plm I and II inhibitors studied. An extensive flexibility of the S2 ' pocket was captured by the simulations predicting the binding mode of the unsymmetrical inhibitors. Plm I and II inhibitors with single digit nanomolar K-i values devoid of inhibitory activity toward human Cat D were identified. One compound, lacking amide bonds, was found to be Plm IV selective and very potent, with a K-i value of 35 nM.
Potent Inhibitors of the Plasmodium falciparum Enzymes Plasmepsin I and II Devoid of Cathepsin D Inhibitory Activity
摘要:
The hemoglobin-degrading aspartic proteases plasmepsin I (Plin I) and plasmepsin II (Plin II) of the malaria parasite Plasmodium falciparum have lately emerged as putative drug targets. A series of C-2-symmetric compounds encompassing the 1,2-dihydroxyethylene scaffold and a variety of elongated P1/P1' side chains were synthesized via microwave-assisted palladium-catalyzed coupling reactions. Binding affinity calculations with the linear interaction energy method and molecular dynamics simulations reproduced the experimental binding data obtained in a Plm II assay with very good accuracy. Bioactive conformations of the elongated P1/P1' chains were predicted and agreed essentially with a recent X-ray structure. The compounds exhibited picomolar to nanomolar inhibition constants for the plasmepsins and no measurable affinity to the human enzyme cathepsin D. Some of the compounds also demonstrated significant inhibition of parasite growth in cell culture. To the best of our knowledge, these plasmepsin inhibitors represent the most selective reported to date and constitute promising lead compounds for further optimization.