Facile Synthesis of Highly Fluorescent Boranil Complexes
摘要:
Complexation of a large variety of Anils (aniline-imines) with boron(III) precursors provides stable Boranils, some of which have been structurally characterized. Analysis of their optical properties reveals that the fluorescence stems from an intraligand charge transfer (ILCT) state with the best quantum yields reaching 90%. Chemistry on the Boranils allows grafting of photoactive modules acting as energy antennae for borondipyrromethene (Bodipy) and subphtalocyanine (SubPc) fluorophores.
Facile Synthesis of Highly Fluorescent Boranil Complexes
摘要:
Complexation of a large variety of Anils (aniline-imines) with boron(III) precursors provides stable Boranils, some of which have been structurally characterized. Analysis of their optical properties reveals that the fluorescence stems from an intraligand charge transfer (ILCT) state with the best quantum yields reaching 90%. Chemistry on the Boranils allows grafting of photoactive modules acting as energy antennae for borondipyrromethene (Bodipy) and subphtalocyanine (SubPc) fluorophores.
A first series of polyanils were synthesized by a simple condensation between either isomers of phenylenediamine derivatives or 1,3,5-benzenetriamine and 4-(diethylamino)salicylaldehyde, while a second series resulted from the condensation between 4,6-dihydroxyisophthalaldehyde or 2,5-dihydroxyterephthalaldehyde and differently substituted anilines. All these polyanils showed good chelating abilities toward trivalent boron fragments such as BF2 or BPh2 to yield the corresponding boranils. The optical properties of these novel fluorophores have been studied both in solution and in the solid-state and show emission wavelengths covering the entire visible spectrum and near infrared (NIR), depending on molecular structure, substitution, and environment. While faintly fluorescent in solution in their molecular state, some polyanils show typical aggregation-induced emission (ALE) behavior upon addition of increasing amounts of water in THF solution, leading to a sizable enhancement of fluorescence intensity.