Synthesis and Biological Evaluation of 8-Oxoadenine Derivatives as Toll-like Receptor 7 Agonists Introducing the Antedrug Concept
摘要:
Systemic administration of a Toll-like receptor 7 (TLR7) agonist is effective to in suppressing Th2 derived inflammation, however systemic induction of various cytokines such as IL-6, IL-12, and type I interferon (IFN) is observed. This cytokine induction would be expected to cause flu-like symptoms. We have previously reported adenine compounds (3, 4) as interferon inducing agents acting as TLR7 agonists. To identify potent anti-inflammatory compounds without systemic side effects, a labile carboxylic ester as an antedrug functionality onto the N(9)-benzyl group of the adenine was introduced. We found that 9e was a potent TLR7 agonist (EC(50) 50 nM) and rapidly metabolized by human plasma (T(1/2)2.6 min) to the pharmacologically much less active carboxylic acid 16. Intratracheal administration of 9e effectively inhibited allergen-induced airway inflammation without inducing cytokines systemically. Therefore, the TLR7 agonist with antedrug characteristics 9e (SM-324405) is a novel candidate for immunotherapy of allergic diseases.
An 8-oxoadenine compound useful as an immuno-modulator having specific activity against Th1/Th2, specifically a prophylactic and therapeutic agent for a topical application for allergic diseases, viral diseases and cancers, which is represented by the following formula (1):
wherein A is a group of a formula represented by the formula (2):
wherein R
2
is a substituted or unsubstituted alkyl group and so on, R
3
is hydrogen atom or an alkyl group, R is a halogen atom and so on, n is 0˜2,
X
1
is oxygen atom, Z is straight or branched chain alkylene, and R
1
is an alkyl group which is optionally substituted by hydroxy group, an alkoxy group, alkoxycarbonyl group and so on, or its pharmaceutically acceptable salt.
Systemic administration of a Toll-like receptor 7 (TLR7) agonist is effective to in suppressing Th2 derived inflammation, however systemic induction of various cytokines such as IL-6, IL-12, and type I interferon (IFN) is observed. This cytokine induction would be expected to cause flu-like symptoms. We have previously reported adenine compounds (3, 4) as interferon inducing agents acting as TLR7 agonists. To identify potent anti-inflammatory compounds without systemic side effects, a labile carboxylic ester as an antedrug functionality onto the N(9)-benzyl group of the adenine was introduced. We found that 9e was a potent TLR7 agonist (EC(50) 50 nM) and rapidly metabolized by human plasma (T(1/2)2.6 min) to the pharmacologically much less active carboxylic acid 16. Intratracheal administration of 9e effectively inhibited allergen-induced airway inflammation without inducing cytokines systemically. Therefore, the TLR7 agonist with antedrug characteristics 9e (SM-324405) is a novel candidate for immunotherapy of allergic diseases.