摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(13)C methyl magnesium bromide | 157978-77-3

中文名称
——
中文别名
——
英文名称
(13)C methyl magnesium bromide
英文别名
——
(13)C methyl magnesium bromide化学式
CAS
157978-77-3
化学式
CH3BrMg
mdl
——
分子量
120.233
InChiKey
AVFUHBJCUUTGCD-GOCMCNPZSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.05
  • 重原子数:
    3.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

点击查看最新优质反应信息

文献信息

  • Synthesis and reactivity of the imidotungsten methyl cation [W(N<sub>2</sub>N<sub>py</sub>)(NPh)Me]<sup>+</sup>: CO<sub>2</sub>adds to the WNPh bond and does not insert into the W–Me bond
    作者:Benjamin D. Ward、Eric Clot、Stuart R. Dubberley、Lutz H. Gade、Philip Mountford
    DOI:10.1039/b208327b
    日期:——
    The imidotungsten dimethyl compound [W(N2Npy)(NPh)Me2] 2 reacts with BArF3 to form the cationic complex [W(N2Npy)(NPh)Me]+ 3+ [anion = [MeBArF3]−; ArF = C6F5; N2Npy = MeC(2-C5H4N)(CH2NSiMe3)2] which undergoes methyl group exchange with added 2, [Cp2ZrMe2] or ZnMe2; treatment of cation 3+ with CO2 or isocyanates leads to cycloaddition reactions at the WNPh bond and not insertion into the W–Me bond, despite the latter product being the most thermodynamically favourable according to DFT calculations.
    亚胺二甲基化合物 [W(N2Npy)(NPh)Me2] 2 与 BArF3 反应生成阳离子络合物 [W(N2Npy)(NPh)Me]+ 3+ [阴离子 = [MeBArF3]â; ArF=C6F5; N2Npy = MeC(2-C5H4N)(CH2NSiMe3)2],其与添加的2、[Cp2ZrMe2]或ZnMe2进行甲基交换;用CO2异氰酸酯处理阳离子3+会导致WNPh键处的环加成反应,而不是插入W-Me键,尽管根据DFT计算,后一种产物在热力学上是最有利的。
  • Intramolecular hydrogen exchange among the coordinated methane fragments of Cp2W(H)CH3. Evidence for the formation of a .sigma. complex of methane prior to elimination
    作者:R. Morris Bullock、Christine E. L. Headford、Karen M. Hennessy、Susan E. Kegley、Jack R. Norton
    DOI:10.1021/ja00193a022
    日期:1989.5
  • Synthesis, Characterization, and Polymerization Behavior of Zirconium and Hafnium Complexes that Contain Asymmetric Diamido-N-Donor Ligands
    作者:Zachary J. Tonzetich、Connie C. Lu、Richard R. Schrock、Adam S. Hock、Peter J. Bonitatebus
    DOI:10.1021/om040043e
    日期:2004.9.1
    Two new "NNN" (diamido-N-donor) ligands have been synthesized that contain ethylene/o-phenylene "arms" and a phenyl-substituted amine donor in the central position, [Mesityl-NH-o-C6H4N(Ph)CH(2)CH(2)NHMesityl] (H(2)1) and [t-Bu-d6-NH-o-C6H4N(Ph)CH(2)CH(2)NHMesityl] (H(2)2). The Zr and Hf complexes that have been isolated include [1]MX2 (M = Zr or Hf, X = NMe2, Cl, or Me) and [2]MX2 (M = Zr or Hf, X = NMe2, Cl, Me). The structures of [1]ZrMe2, [2]ZrMe2, and a dimeric species with the formula [MesitylN-o-C(6)H(4)NCH(2)CH(2)NMesityl]Zr-2(NMe2)(5) have been determined in X-ray crystallographic studies. Abstraction of a methyl kgroup in [1]MMe2 (M = Zr or HO with [Ph3C][B(C6F5)(4)] gives rise to cationic complexes that are active initiators for the polymerization of 1-hexene. Similar activation of [2]MMe2 (M = Zr or Hf) gives rise to dimeric monocations that eventually break up and react further to yield cationic monomethyl species. In all cases the poly[1-hexene] produced in the presence of the monometallic cations was found to be atactic.
  • The gas phase ion chemistry of the acetyl cation and isomeric [C2H3O]+ ions. On the structure of the [C2H3O]+ daughter ions generated from the enol of acetone radical cation
    作者:Peter C. Burgers、John L. Holmes、Jan E. Szulejko、Alexander A. Mommers、Johan K. Terlouw
    DOI:10.1002/oms.1210180607
    日期:1983.6
    AbstractMethods are described for the unequivocal identification of the acetyl, [CH3\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument} O] (a), 1‐hydroxyvinyl, [CH2\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}OH] (b), and oxiranyl, (d), cations. They involve the careful examination of metastable peak intensities and shapes and collision induced processes at very low, high and intermediate collision gas pressures. It will be shown that each [C2H3O]+ ion produces a unique metastable peak for the fragmentation [C2H3O]+ → [CH3]++CO, each appropriately relating to different [C2H3O]+ structures. [CH3\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}O] ions do not interconvert with any of the other [C2H3O]+ ions prior to loss of CO, but deuterium and 13C labelling experiments established that [CH2\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}OH] (b) rearranges via a 1,2‐H shift into energy‐rich leading to the loss of positional identity of the carbon atoms in ions (b). Fragmentation of b to [CH3]++CO has a high activation energy, c. 400 kJ mol−1. On the other hand, , generated at its threshold from a suitable precursor molecule, does not rearrange into [CH2\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}OH], but undergoes a slow isomerization into [CH3\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}O] via [CH2\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}HO]. Interpretation of results rests in part upon recent ab initio calculations.The methods described in this paper permit the identification of reactions that have hitherto lain unsuspected: for example, many of the ionized molecules of type CH3COR examined in this work produce [CH2\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}OH] ions in addition to [CH3\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}O] showing that some enolization takes place prior to fragmentation. Furthermore, ionized ethanol generates a, b and d ions. We have also applied the methods for identification of daughter ions in systems of current interest. The loss of OH˙ from [CH3COOD] generates only [CH2\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}OD]. Elimination of CH3˙ from the enol of acetone radical cation most probably generates only [CH3\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm C}\limits^\rm + } $\enddocument}O] ions, confirming the earlier proposal for non‐ergodic behaviour of this system. We stress, however, that until all stable isomeric species (such as [CH3\documentclassarticle}\pagestyleempty}\begindocument}$ \mathop \rm O}\limits^\rm + } $\enddocument}C:]) have been experimentally identified, the hypothesis of incompletely randomized energy should be used with reserve.
  • CN116554013
    申请人:——
    公开号:——
    公开(公告)日:——
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 鲸蜡基聚二甲基硅氧烷 高纯二甲基镉 骨化醇杂质DCP 马沙骨化醇中间体 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镓,碘二甲基- 镓,二(1,1-二甲基乙基)甲基- 镁,溴[(1E)-1-甲基-1-丙烯基]- 镁,溴[(1E)-1-甲基-1-丙烯基]- 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锰,五羰基(三甲基甲锡烷基)-,(OC-6-22)- 锡烷,乙氧基三甲基- 锡烷,三丁基(1E)-1-庚烯基- 锡烷,三丁基(1-甲基-2-丁烯基)-,(Z)- 锡烷,三(1,1-二甲基乙基)乙炔基- 锡烷,[4-(2-乙基己基)-2-噻吩基]三甲基- 锡烷,(4-氯二环[2.2.1]庚-1-基)三甲基- 锡烷,(1E)-1-丁烯-3-炔基三丁基- 锡杂苯 锑杂苯 锑,二溴三丁基- 锌,溴-1-己炔基- 铷,[三(三甲基甲硅烷基)甲基]- 铝,三庚基- 铝,丁氧基二(2-甲基丙基)- 铅烷,三丁基-1-己炔基- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 钼,亚甲基- 金刚烷基乙基三氯硅烷 酰氧基丙基双封头 达格列净杂质 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基锡 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基氧代锡烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷