Direct alkoxysilylation of alkoxysilanes for the synthesis of explicit alkoxysiloxane oligomers
摘要:
Direct alkoxysilylation, which is a powerful tool to provide explicit alkoxysiloxanes, is developed and its versatility is investigated. Siloxane pentamers Si[OSiR1(OMe)(2)](4) having various functional groups (R-1 = methyl, vinyl, phenyl, chloropropyl and n-butyl groups) were successfully obtained by direct alkoxysilylation of Si(OR)(4) (R= t-Bu, CHPh2). Thus, the versatility of the reaction is confirmed on organic functional groups R-1. Functional group tolerance of the reaction is discussed on the basis of electro-negativity of the R-1 groups. Alkoxysilylation of Si(Ot-Bu)(2)(OMe)(2) and Si(Ot-Bu)(OMe)(3) selectively gives trimer (MeO)(2)Si[OSiMe(OMe)(2)](2) and dimer (MeO)(3)SiOSiMe(OMe)(2), respectively. Thus, the feasibility on siloxane structure is also confirmed. Various siloxane compounds are synthesized by this newly developed reaction for the first time. (C) 2012 Published by Elsevier B.V.
Direct alkoxysilylation of alkoxysilanes for the synthesis of explicit alkoxysiloxane oligomers
摘要:
Direct alkoxysilylation, which is a powerful tool to provide explicit alkoxysiloxanes, is developed and its versatility is investigated. Siloxane pentamers Si[OSiR1(OMe)(2)](4) having various functional groups (R-1 = methyl, vinyl, phenyl, chloropropyl and n-butyl groups) were successfully obtained by direct alkoxysilylation of Si(OR)(4) (R= t-Bu, CHPh2). Thus, the versatility of the reaction is confirmed on organic functional groups R-1. Functional group tolerance of the reaction is discussed on the basis of electro-negativity of the R-1 groups. Alkoxysilylation of Si(Ot-Bu)(2)(OMe)(2) and Si(Ot-Bu)(OMe)(3) selectively gives trimer (MeO)(2)Si[OSiMe(OMe)(2)](2) and dimer (MeO)(3)SiOSiMe(OMe)(2), respectively. Thus, the feasibility on siloxane structure is also confirmed. Various siloxane compounds are synthesized by this newly developed reaction for the first time. (C) 2012 Published by Elsevier B.V.
The concept of protecting groups in organic synthesis is applied to the synthesis of siloxane oligomers with alkoxy groups. Several alkoxysiloxane oligomers were successfully synthesized by substitution of trimethysilyl groups with alkoxysilyl groups.
nanomaterials by stepwise reactions of Si−OR (R=alkyl) and Si−Cl groups. Intermolecular exchange of alkoxy and chloro groups between alkoxysilanes and chlorosilanes (functional group exchange reaction) provides an efficient and environmentally benign route to alkoxychlorosilanes. BiCl3 as a Lewis acid catalyst can promote the functional group exchange reactions more efficiently than conventional acid catalysts
Direct alkoxysilylation, which is a powerful tool to provide explicit alkoxysiloxanes, is developed and its versatility is investigated. Siloxane pentamers Si[OSiR1(OMe)(2)](4) having various functional groups (R-1 = methyl, vinyl, phenyl, chloropropyl and n-butyl groups) were successfully obtained by direct alkoxysilylation of Si(OR)(4) (R= t-Bu, CHPh2). Thus, the versatility of the reaction is confirmed on organic functional groups R-1. Functional group tolerance of the reaction is discussed on the basis of electro-negativity of the R-1 groups. Alkoxysilylation of Si(Ot-Bu)(2)(OMe)(2) and Si(Ot-Bu)(OMe)(3) selectively gives trimer (MeO)(2)Si[OSiMe(OMe)(2)](2) and dimer (MeO)(3)SiOSiMe(OMe)(2), respectively. Thus, the feasibility on siloxane structure is also confirmed. Various siloxane compounds are synthesized by this newly developed reaction for the first time. (C) 2012 Published by Elsevier B.V.