Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate
Bacillus
strains demonstrating antimicrobial activity against
Staphylococcus aureus
. Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of
S. aureus
. Proteomics and metabolomics revealed a unique mechanism of
Bacillus
self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.
微生物组谱是阐明宿主生物的进化生物学途径、潜在病理和行为模式的关键线索。此外,异域微生物群落来源代表了一个未被探索的领域,可以发现微生物次生代谢产物。然而,建立细菌的功能性是由微生物组内复杂的相互作用网络所复杂的。在这里,我们应用了一种超高通量(uHT)微流控液滴平台,对西伯利亚熊口腔微生物群落进行活性分析,以分离表现出抗菌活性的芽孢杆菌菌株,对金黄色葡萄球菌进行抑制。基因组挖掘使我们能够确定抗生素amicoumacin A(Ami)是抑制金黄色葡萄球菌生长的原因。蛋白质组学和代谢组学揭示了一种独特的芽孢杆菌自我抗性机制,基于其通过激酶AmiN和磷酸酶AmiO的微妙平衡来失活和激活Ami。我们开发了uHT定量单细胞分析,以估计抗生素对不同微生物组的功效,并用它来确定Ami对人类和西伯利亚熊微生物组的活性谱。因此,uHT微流控液滴平台活性分析是发现抗生素和量化微生物组外部影响的强大工具。