Structural and spectroscopic characterization of ClC(O)SNSO. A theoretical and experimental study
作者:R M. Romano、C O. Della Ve´dova、R Boese、P Hildebrandt
DOI:10.1039/a809333d
日期:——
N-(Sulfinylimine)chlorocarbonylsulfane, ClC(O)SNSO, was prepared by the reaction of ClC(O)SCl with Hg(NSO)2. The crystal structure of ClC(O)SNSO was determined by X-ray diffraction analysis from crystals obtained at low temperature using a miniature zone melting procedure. The molecule exhibits only one form with Cs symmetry: the CO double bond syn with respect to the S–N single bond, the C–S single bond anti to the NS double bond and the S–N single bond syn with respect to the SO double bond. The following skeletal parameters were determined (distances in Å, angles in degrees, errors between parentheses expressed as sigma): Cl–C=1.771(2), CO=1.184(3), C–S=1.750(2), S–N=1.666(2), NS=1.534(2), SO=1.455(2), ClCO=122.9(2), ClCS=107.1(1), OCS=130.0(2), CSN=97.4(1), SNS=122.3(1). NSO=118.0(1), OCSN=-1.9, ClCSN=178.0, CSNS=-178.0, SNSO=-1.2. These experimental parameters compare satisfactorily with those obtained by abinitio and DFT calculations. The best agreement was found with the B3PW91/6–31+G* calculation. These quantum chemical methods were also employed to predict the vibrational spectra providing a good agreement with the experimental Raman spectra measured from the liquid sample. It is shown that the analysis of the vibrational spectra provides a sound basis for the determination of the conformation and configuration of R–NSO compounds. Raman excitation profiles were determined in the range from 514 to 413 nm. Most of the modes are predominantly enhanced via the π→π* transition at 296 nm but additional intensity is derived from low-electronic transitions at ca. 450 and 430 nm which are too weak to be detectable in the UV/VIS absorption spectra.
通过 ClC(O)SCl 与 Hg(NSO)2 的反应制备了 N-(亚磺酰亚胺)氯羰基硫烷(ClC(O)SNSO)。ClC(O)SNSO 的晶体结构是通过 X 射线衍射分析,利用微型区熔程序在低温下获得的。该分子只呈现出一种 Cs 对称形式:CO 双键与 S-N 单键同向,C-S 单键与 NS 双键反向,S-N 单键与 SO 双键同向。确定了以下骨架参数(距离以 Å 为单位,角度以度数为单位,括号内的误差以 sigma 表示):Cl-C=1.771(2),CO=1.184(3),C-S=1.750(2),S-N=1.666(2),NS=1.534(2),SO=1.455(2),ClCO=122.9(2),ClCS=107.1(1),OCS=130.0(2),CSN=97.4(1),SNS=122.3(1)。NSO=118.0(1),OCSN=-1.9,ClCSN=178.0,CSNS=-178.0,SNSO=-1.2。这些实验参数与通过 abinitio 和 DFT 计算得到的参数相比令人满意。与 B3PW91/6-31+G* 计算结果的一致性最好。这些量子化学方法还被用来预测振动光谱,结果与液体样品测量的实验拉曼光谱十分吻合。结果表明,振动光谱分析为确定 R-NSO 化合物的构象和构型提供了可靠的依据。拉曼激发曲线是在 514 至 413 nm 范围内测定的。大多数模式主要通过 296 纳米波长处的π→π* 转变得到增强,但额外的强度来自于约 450 纳米波长和 430 纳米波长处的低电子转变。450 纳米和 430 纳米的低电子跃迁产生了额外的强度,这些跃迁太弱,无法在紫外/可见吸收光谱中检测到。