Discovery of Potent Cyclic GMP Phosphodiesterase Inhibitors. 2-Pyridyl- and 2-Imidazolylquinazolines Possessing Cyclic GMP Phosphodiesterase and Thromboxane Synthesis Inhibitory Activities
摘要:
Moderate cyclic GMP phosphodiesterase (cGMP-PDE, PDE V) inhibitor 2-phenyl-4-anilino-quinazoline (1) was identified utilizing MultiCASE assisted drug design (MCADD) technology. Modification of compound 1 was conducted at the 2-, 4-, and 6-positions of the quinazoline ring for enhancement of cGMP-PDE inhibitory activity. The 6-substituted 2-(imidazol-1-yl)-quinazolines are 1000 times more potent in in vitro PDE V enzyme assay than the well-known inhibitor zaprinast. The 6-substituted derivatives of 2-(3-pyridyl)quinazoline 84 and 2-(imidazol-1-yl)quinazoline 86 exhibited more than 1000-fold selectivity for PDE V over the other four PDE isozymes. In addition, cGMP-PDE inhibitors 64, 65, and 73 were found to have an additional property of thromboxane synthesis inhibitory activity.
The present invention relates to compounds useful as inhibitors of voltage-gated sodium channels and calcium channels. The invention also provides pharmaceutically acceptable compositions comprising the compounds of the invention and methods of using the compositions in the treatment of various disorders.
The present invention relates to compounds useful as inhibitors of voltage-gated sodium channels and calcium channels. The invention also provides pharmaceutically acceptable compositions comprising the compounds of the invention and methods of using the compositions in the treatment of various disorders.
The Suzuki-Miyaura coupling between 2-chloro-4-aminoquinazolines and arylboronic acids catalyzed by the well-defined N-heterocyclic carbene-PdCl2-1-methylimidazole complex was performed at room temperature, giving the desired products in good to high yields. Through this methodology, a variety of 2-aryl-4-aminoquinazoline derivatives with potential pharmaceutical activities can be achieved under mild reaction conditions. (C) 2020 Elsevier Ltd. All rights reserved.