摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(3,4-diphenylcyclobutane-1,2-diyl)bis(phenylmethanone) | 37676-14-5

中文名称
——
中文别名
——
英文名称
(3,4-diphenylcyclobutane-1,2-diyl)bis(phenylmethanone)
英文别名
[(1S,2R,3S,4R)-2-benzoyl-3,4-diphenylcyclobutyl]-phenylmethanone
(3,4-diphenylcyclobutane-1,2-diyl)bis(phenylmethanone)化学式
CAS
37676-14-5
化学式
C30H24O2
mdl
——
分子量
416.519
InChiKey
WCTIPYXJFUKGBD-KXSOJQAOSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.2
  • 重原子数:
    32
  • 可旋转键数:
    6
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.13
  • 拓扑面积:
    34.1
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为产物:
    描述:
    苯亚甲基苯乙酮 在 PF6*Ru complex-based metal-organic cage MOC-68 作用下, 以 氘代乙腈重水 为溶剂, 以78.495%的产率得到
    参考文献:
    名称:
    基于柔性金属胺笼的阴离子介导的[2 + 2]光环加成催化高非对映选择性
    摘要:
    阴离子可以对蛋白质结构的溶解度和折叠产生显着影响,从而由于众所周知的霍夫迈斯特效应而改变其活性和稳定性。在此,我们报道了一种类蛋白质变构金属有机笼(MOC-68),其溶解度和构象通过阴离子交换调节,导致松弛状态(R状态)和紧张状态(T状态)之间的转换显示出独特的主客互动。这种构象变化使得无环烯烃分子间[2+2]光环加成的变构催化能够大大提高产率和非对映选择性。动力学实验表明,MOC-68 的 T 态对于空间和热力学不利的syn -HH 产物具有优越的催化性能,其速率比 R 态提高了三倍,并且由于反应加速而总共提高了七倍酶促笼效应。值得注意的是,这种变构笼表现出卓越的稳定性和可回收性,在五个循环中保持一致的催化效率和选择性。这项工作突出了柔性笼中结构变构在增强底物结合能力和催化选择性方面的潜力,为将模拟酶笼催化发展为可调节和高效的变构催化提供了一种方法。
    DOI:
    10.1021/acscatal.3c04593
点击查看最新优质反应信息

文献信息

  • Photosensitised regioselective [2+2]-cycloaddition of cinnamates and related alkenes
    作者:Santosh K. Pagire、Asik Hossain、Lukas Traub、Sabine Kerres、Oliver Reiser
    DOI:10.1039/c7cc06710k
    日期:——
    An efficient method for the synthesis of substituted cyclobutanes from cinnamates, chalcones, and styrenes has been developed utilizing a visible-light triplet sensitisation mode. This reaction provides a diverse range of substituted cyclobutanes in high yields under mild conditions without the need of external additives. Good regioselectivity is obtained due to strong π–π-stacking of arene moieties
    利用可见光三重态敏化模式已经开发了一种从肉桂酸酯,查耳酮和苯乙烯合成取代环丁烷的有效方法。该反应在温和条件下无需外部添加剂即可高收率地提供各种范围的取代的环丁烷。良好的区域选择性是由于芳烃部分的强烈π-π堆积而获得的,而非对映选择性则取决于芳烃底物的电子效应或邻位取代。木质素天然产物(±)-丹哥酚的形式合成证明了这种转化的效用。
  • Heteroleptic copper(I) complexes as energy transfer photocatalysts for the intermolecular [2 + 2] photodimerization of chalcones, cinnamates and cinnamamides
    作者:Qing-An Wu、Chen-Chao Ren、Feng Chen、Tian-Qi Wang、Yu Zhang、Xue-Fen Liu、Jian-Bin Chen、Shu-Ping Luo
    DOI:10.1016/j.tetlet.2021.153091
    日期:2021.5
    The [2 + 2] photodimerization of chalcones, cinnamates and cinnamamides can be effectively catalyzed by heteroleptic copper(I) complexes. The reactions were carried out under mild reaction conditions and the products were obtained in 20–72% yield under visible light irradiation. The copper-based photocatalyst comprised of the rigid phenanthroline ligand with substituents at the 2,9-positions and the
    查耳酮,肉桂酸酯和肉桂酰胺的[2 + 2]光二聚反应可通过杂配铜(I)配合物有效地催化。反应在温和的反应条件下进行,在可见光照射下以20-72%的收率获得产物。由刚性菲咯啉配体在2,9-位和4,7-位带有取代基的铜基光催化剂在通过能量转移途径的光二聚反应中显示出高活性。
  • Anion-Mediated Allosteric Catalysis of [2 + 2] Photocycloaddition Based on a Flexible Metallo-Amine Cage for High Diastereoselectivity
    作者:Yu-Lin Lu、Yu-Han Qin、Shao-Ping Zheng、Jia Ruan、Yin-Hui Huang、Xiao-Dong Zhang、Chen-Hui Liu、Peng Hu、Hai-Sen Xu、Cheng-Yong Su
    DOI:10.1021/acscatal.3c04593
    日期:2024.1.5
    MOC-68 is superior in catalytic performance for the steric and thermodynamic unfavored syn-HH product, displaying a threefold rate enhancement over the R-state and totally a sevenfold increase owing to the reaction acceleration contributed by an enzymatic cage effect. Notably, this allosteric cage exhibits exceptional stability and recyclability, maintaining consistent catalytic efficiency and selectivity
    阴离子可以对蛋白质结构的溶解度和折叠产生显着影响,从而由于众所周知的霍夫迈斯特效应而改变其活性和稳定性。在此,我们报道了一种类蛋白质变构金属有机笼(MOC-68),其溶解度和构象通过阴离子交换调节,导致松弛状态(R状态)和紧张状态(T状态)之间的转换显示出独特的主客互动。这种构象变化使得无环烯烃分子间[2+2]光环加成的变构催化能够大大提高产率和非对映选择性。动力学实验表明,MOC-68 的 T 态对于空间和热力学不利的syn -HH 产物具有优越的催化性能,其速率比 R 态提高了三倍,并且由于反应加速而总共提高了七倍酶促笼效应。值得注意的是,这种变构笼表现出卓越的稳定性和可回收性,在五个循环中保持一致的催化效率和选择性。这项工作突出了柔性笼中结构变构在增强底物结合能力和催化选择性方面的潜力,为将模拟酶笼催化发展为可调节和高效的变构催化提供了一种方法。
查看更多

同类化合物

3,4-双(4-羟基苯基)环丁烷-1,2-二羧酸 3,4-二苯基环丁烷-1,2-二羧酸 1-[2,3-二甲基-4-(2,4,5-三甲氧基苯基)环丁基]-2,4,5-三甲氧基苯 (2,3,4-三苯基环丁基)苯 DL-(1R,2R,3S,4S)-3,4-bis(4-methoxyphenyl)cyclobutane-1,2-dicarboxylic acid tetrakis-1,2,3,4-(4’- carboxyphenyl)cyclobutane 3,3'-dinitro-β-truxinic acid diphenyl 3,4-diphenylcyclobutane-1,2-dicarboxylate DL-(1R,2R,3S,4S)-diphenyl 3,4-diphenylcyclobutane-1,2-dicarboxylate 3,4-bis(2-hydroxy-5-methylphenyl)cyclobutane-1,2-dicarboxylic acid N-(n-pentyl)-3β,4β-bis(3',4'-dimethoxyphenyl)-1α,2α-cyclobutanedicarboximide trans-1,2-diphenylbicyclo[3.1.0.02,4]hexane 8β,8'α-dimethyl-7α,7'β-bis(3-methoxy-4-hydroxyphenyl)cyclobutane 4,4'-((1R,2R,3S,4S)-3,4-dimethylcyclobutane-1,2-diyl)bis(methoxybenzene) caracasandiamide 3β,4β-bis(3',4'-dimethoxyphenyl)-1α-carboxy-2α-<butyl>cylobutanecarboxamide quinic acid diester of 3,4,3',4'-tetrahydroxy-β-truxinic acid 3,3′-difluoro-β-truxinic acid endiandrin B 3,3-Dimethyl-2,4-diphenyl-tricyclo[3.2.0.02,4]heptane (1R,6S,7S,8R)-7,8-Diphenyl-bicyclo[4.2.0]octane 1,5-Diphenyl-quadricyclan dimethyl t-3,t-4-di-(3,4,5-trimethoxyphenyl)cyclobutane-r-1,c-2-dicarboxylate (±)-(1R,5S,6R,7S)-6,7-bis(4-methoxyphenyl)-3-oxabicyclo[3.2.0]heptane 2-((1R,2S,3R,4R)-2-methyl-2-nitro-3,4-diphenylcyclobutyl)acetaldehyde 1α,2α-Di-(2-methoxy-phenyl)-cyclobutan-dicarbonsaeure-(3β,4β)-dimethylester o,o'-Dimethyl-β-truxillsaeuredimethylester 1,2-diisobutyryl-3,4-diphenyl-cyclobutane 3,4-bis(3,4-dimethylphenyl)cyclobutane-1,2-dicarboxylic acid (17S,18R,19S,20R)-18,19-bis(3,4-dimethylphenyl)-15,22-diazahexacyclo[21.2.2.211,14.12,6.017,20.010,30]triaconta-1(25),2,4,6(30),7,9,11(29),12,14(28),23,26-undecaene-16,21-dione 3,3-Dimethyl-2,4-diphenyl-endo-tricyclo<3.3.0.02,4>oct-6-en ((1S,2R,3S,4R)-3-Hydroxymethyl-1,4-diphenyl-bicyclo[2.2.0]hex-2-yl)-methanol (1R,7S,8R,11S)-8,11-Diphenyl-3,5-dioxa-4-thia-tricyclo[5.4.0.08,11]undecane 4,4-dioxide 4a,4b-Bis(4-methoxyphenyl)decahydrobiphenylene-1,8-dione 4a,4b-Bis(4-nitrophenyl)decahydrobiphenylene-1,8-dione 8-Methyl-4,4a-diphenyltetrahydro-1h,5h-3,4,4b-(methanetriyl)cyclopenta[1,3]cyclopropa[1,2-b]pyridin-2(3h)-one (1R,2R,3R,4R)-3,4-Bis-{2-[bis-(4-tert-butyl-phenyl)-phosphinoyl]-phenyl}-cyclobutane-1,2-dicarboxylic acid diethyl ester (S,S,S,S)-3,4-bis(2-diphenylphosphinylphenyl)-1,2-cyclobutanedimethyl di(diphenylphosphine) (1R,2R,3R,4R)-3,4-Bis-[2-(diphenyl-phosphinoyl)-phenyl]-cyclobutane-1,2-dicarboxylic acid diethyl ester (1R,2R,3R,4R)-3,4-Bis-{2-[bis-(3,5-dimethyl-phenyl)-phosphinoyl]-phenyl}-cyclobutane-1,2-dicarboxylic acid diethyl ester 4,4'-(3,4-diphenyl-cyclobutane-1,2-diyl)-bis-benzo[h]quinoline 4,4'-(3,4-diphenyl-cyclobutane-1,2-diyl)-bis-benzo[h]quinoline 3,4-diphenyl-3,4-dichlorocyclobutanodicarbox-1,2-dianilide (1S,5R,6R)-3-butyl-6,7-bis(2-hydroxyphenyl)-3-azabicyclo[3.2.0]heptane-2,4-dione (1R,2R,3R,4R)-3,4-Bis-{2-[bis-(4-methoxy-phenyl)-phosphinoyl]-phenyl}-cyclobutane-1,2-dicarboxylic acid diethyl ester 1,2-Diphenyl-1,2,2a,10b-tetrahydro-cyclobuta[l]phenanthrene all-cis-1,2-Dibenzyl-3,4-diphenylcyclobutan (3,4-diphenylcyclobutane-1,2-diyl)bis(phenylmethanone) 1,2-dibenzoyl-3,4-diphenyl-cyclobutane