摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3,3-Dimethyl-2,4-diphenyl-endo-tricyclo<3.3.0.02,4>oct-6-en | 39781-96-9

中文名称
——
中文别名
——
英文名称
3,3-Dimethyl-2,4-diphenyl-endo-tricyclo<3.3.0.02,4>oct-6-en
英文别名
3,3-Dimethyl-2,4-diphenyl-endo-tricyclo<3.3.0.02,4>oct-6-ene;exo-3,3-dimethyl-1,4-diphenyltricyclo[3.3.0.02,4]oct-6-ene;(1R,2S,4R,5S)-3,3-dimethyl-2,4-diphenyltricyclo[3.3.0.02,4]oct-6-ene
3,3-Dimethyl-2,4-diphenyl-endo-tricyclo<3.3.0.0<sup>2,4</sup>>oct-6-en化学式
CAS
39781-96-9
化学式
C22H22
mdl
——
分子量
286.417
InChiKey
LZAINAFEFLQCJE-YUVXSKOASA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.7
  • 重原子数:
    22
  • 可旋转键数:
    2
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.36
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    Electronic Substituent Effects on the Acid-Catalyzed [4+ + 2] Cycloaddition of Isopyrazoles with Cyclopentadiene and the Photochemical and Thermal Denitrogenation of the Resulting 1,4-Diaryl-7,7-dimethyl-2,3-diazabicyclo[2.2.1]hept-2-ene Azoalkanes to Bicyclo[2.1.0]pentanes
    摘要:
    Eight symmetrically disubstituted 3,5-diaryl-4,4-dimethylisopyrazoles 6 with para and meta substituents (OMe, Me, H, F, Cl, Br, CN, NO2) and two unsymmetrically para-substituted derivatives (OMe and NO2; Me and CO(2)Me) were synthesized from the corresponding 1,3-diaryl-2,2-dimethyl-1,3-propanediones 5, which in turn were readily available by 2,2-dimethylation of the diones 4. The acid-catalyzed cycloaddition of cyclopentadiene to the isopyrazoles 6, a Diels-Alder reaction with inverse electron demand, afforded the 1,4-diaryl-substituted gem-dimethyl azoalkanes 7 of the diazabicyco[2.2.1]hept-2-ene (DBH) type. The cycloadduct yields were strongly dependent on the nature of the aryl substituents and highest for the electron-withdrawing substituents. In acidic solution, the azoalkanes showed cycloreversion to generate an equilibrium between isopyrazole 6, cyclopentadiene, and azoalkane 7. For the p-methoxy derivative, cycloreversion was essentially quantitative, whereas only 20% cycloreversion occurred for the para nitro compound. A positive Hammett rho value (rho = 3.24 for 2 equiv of CF3COOH) was determined for the equilibrium constants of the acid-catalyzed [4(+) + 2] cycloaddition. The unsymmetrically substituted isopyrazoles gave two regioisomeric cycloadducts with a slight excess of one isomer. The direct and triplet-sensitized photochemical and thermal denitrogenation of the azoalkanes 7 gave in quantitative yields the 1,4-diaryl-substituted bicyclo[2.1.0]pentanes (BCP) 8 with retention of configuration. The azoalkanes 7 and the housanes 8 are more persistent than the related 1,4-diaryl-substituted DBH and BCP derivatives. The stabilizing effect is rationalized in terms of less favorable benzylic conjugation in the transition states for C-N (azoalkanes) and C-C (housanes) bond cleavage due to steric interactions between the geminal methyl groups at the methane bridge and the diaryl substituents at the bridgehead sites.
    DOI:
    10.1021/jo00093a010
点击查看最新优质反应信息

文献信息

  • Stereochemical Memory in the Temperature-Dependent Photodenitrogenation of Bridgehead-Substituted DBH-Type Azoalkanes:  Inhibition of Inverted-Housane Formation in the Diazenyl Diradical through the Mass Effect (Inertia) and Steric Hindrance
    作者:Waldemar Adam、Hermenegildo García、Manfred Diedering、Vicente Martí、Massimo Olivucci、Emilio Palomares
    DOI:10.1021/ja026321n
    日期:2002.10.1
    syn/anti ratio of the housanes 2 depends on the extent and type of bridgehead substitution; the amount of the anti diastereomer (retention) follows the order Ph > Me > H, and double substitution is more effective than single. This stereochemical memory is interpreted in terms of the mass effect (inertia) of the substituents and steric interaction (size) between the substituents at the bridgehead and the methylene
    环戊烯退火 DBH 型偶氮烷烃 1 的光化学脱氮作用已在溶液中作为桥头取代和温度的函数进行了研究。对于所有衍生物,即未取代的 1a(H/H)、单甲基 1b(Me/H) 二甲基 1c(Me/Me)、单苯基 1d(Ph/H) 和二苯基 1e(Ph/Ph),温度为syn 和 anti housanes 2 的依赖比例为直接光解中单线态(高温)和三线态(低温)反应通道之间的竞争提供了实验支持。housanes 2的syn/anti比例取决于桥头替换的程度和类型;反非对映体(保留)的量遵循Ph > Me > H的顺序,双取代比单取代更有效。这种立体化学记忆是根据取代基的质量效应(惯性)和桥头取代基与亚甲基桥之间的空间相互作用(大小)在瞬态二氮烯基双自由基构象 (1)DZ (exo- ax) 和 (1)DZ (exo-eq)。这些构象异构体是在 (1)(n,pi) 激发的偶氮烷烃衰变时冲动生成的,这是
  • 1,3-Cyclopentanediyl Diradicals:  Substituent and Temperature Dependence of Triplet−Singlet Intersystem Crossing
    作者:Fumio Kita、Waldemar Adam、Paul Jordan、Werner M. Nau、Jakob Wirz
    DOI:10.1021/ja991362d
    日期:1999.10.1
    prediction by the model, push−pull substitution does not enhance the ionic contribution. Arrhenius parameters, Ea = 2−6 kcal mol-1 and A = 107−1010 s-1, were determined from the temperature dependences of the decay rate constants. A sensitive statistical test is used to establish that the Arrhenius parameters exhibit enthalpy−entropy compensation, ...
    33 1,3-二芳基-1,3-环戊二基三线态双自由基的寿命由相应偶氮烷前体的激光闪光光解确定。在 294 K 的脱气溶液中,一阶衰减率常数的范围为 0.8 到 16.7 × 105 s-1,并且表现出对布朗 σ+ 取代基常数的系统但非线性的依赖性。根据双轨道中的双电子模型对自旋轨道耦合的分析表明,电子对系统间交叉率的影响是通过影响双自由基最低单线态波函数中离子贡献的权重来实现的。与直觉相反,但与模型的预测一致,推挽取代不会增强离子贡献。Arrhenius 参数,Ea = 2−6 kcal mol-1 和 A = 107−1010 s-1,由衰减率常数的温度依赖性确定。使用敏感的统计测试来确定 Arrhenius 参数表现出焓-熵补偿,...
  • Beck, Karin; Huenig, Siegfried, Chemische Berichte, 1987, vol. 120, p. 477 - 484
    作者:Beck, Karin、Huenig, Siegfried
    DOI:——
    日期:——
  • Radical Stabilization and Ground State Polar Substituent Effects in the Thermal Decomposition of Azoalkanes
    作者:Werner M. Nau、Heinrich M. Harrer、Waldemar Adam
    DOI:10.1021/ja00103a012
    日期:1994.11
    The thermolysis rates of a series of the 1,4-diaryl-2,3-diaza[2.2.1]bicyclohept-2 derivatives 1 with a large variety of aryl substituents (p-NH2, p-OMe, p-Me, H, p-F, p-Cl, p-Br, m-I, p-I, Nt-CN, p-CN, m-NO2, p-NOz, and p-CO(2)Me) have been determined to probe the electronic substituent effects in the thermal decomposition of azoalkanes. The correlation of the logarithmic relative rate constants versus the Creary substituent constants for radical stabilization (cf. Creary, X.; et al. J. Org. Chem. 1987, 52, 3254) improved considerably when polar effects (positive rho value) were included in the form of a two-parameter Hammett treatment. The importance of polar effects was also established in the reported thermolysis rate data for aryl-substituted azopropanes 2, azoethanes 3, azomethanes 4, azoneopentanes 5, and 3,5-diaryl-1-pyrazolines 6. The two-parameter analysis reveals that the thermal decomposition rates of azoalkanes are enhanced by radical- as well as anion-stabilizing substituents. On one hand, the ratio of the radical and polar reaction constants (rho(rad)+rho(pol)) serves as useful parameter to diagnose the radical nature in the decompositions of azoalkanes; thus, in general, radical effects dominate within the azoalkane 1-6 series. On the other hand, the overall sensitivity of the thermal decompositions toward substituent effects is reflected by the sum of the reaction constants (rho(rad)+rho(pol)) The polar effect is attributed to polar destabilization in the ground states of the azoalkanes, for which the polarized C-N bond is weakened by aryl substituents with electron accepters at the positively charged benzylic carbon atom. Semiempirical (AM1) calculations corroborate such polar effects for the azoalkanes 1-6 versus their corresponding diaryl-substituted alkanes 7-12.
  • Dissolving metal reduction of anti-tricyclo[3.2.0.02,4]heptanes and anti-tricyclo[3.3.0.02,4]octanes. Intramolecular epoxide cleavage as a route to highly strained tricyclic alcohols
    作者:Leo A. Paquette、Kenneth H. Fuhr、Spencer Porter、Jon Clardy
    DOI:10.1021/jo00918a010
    日期:1974.2
查看更多

同类化合物

3,4-双(4-羟基苯基)环丁烷-1,2-二羧酸 3,4-二苯基环丁烷-1,2-二羧酸 1-[2,3-二甲基-4-(2,4,5-三甲氧基苯基)环丁基]-2,4,5-三甲氧基苯 (2,3,4-三苯基环丁基)苯 DL-(1R,2R,3S,4S)-3,4-bis(4-methoxyphenyl)cyclobutane-1,2-dicarboxylic acid tetrakis-1,2,3,4-(4’- carboxyphenyl)cyclobutane 3,3'-dinitro-β-truxinic acid diphenyl 3,4-diphenylcyclobutane-1,2-dicarboxylate DL-(1R,2R,3S,4S)-diphenyl 3,4-diphenylcyclobutane-1,2-dicarboxylate 3,4-bis(2-hydroxy-5-methylphenyl)cyclobutane-1,2-dicarboxylic acid N-(n-pentyl)-3β,4β-bis(3',4'-dimethoxyphenyl)-1α,2α-cyclobutanedicarboximide trans-1,2-diphenylbicyclo[3.1.0.02,4]hexane 8β,8'α-dimethyl-7α,7'β-bis(3-methoxy-4-hydroxyphenyl)cyclobutane 4,4'-((1R,2R,3S,4S)-3,4-dimethylcyclobutane-1,2-diyl)bis(methoxybenzene) caracasandiamide 3β,4β-bis(3',4'-dimethoxyphenyl)-1α-carboxy-2α-<butyl>cylobutanecarboxamide quinic acid diester of 3,4,3',4'-tetrahydroxy-β-truxinic acid 3,3′-difluoro-β-truxinic acid endiandrin B 3,3-Dimethyl-2,4-diphenyl-tricyclo[3.2.0.02,4]heptane (1R,6S,7S,8R)-7,8-Diphenyl-bicyclo[4.2.0]octane 1,5-Diphenyl-quadricyclan dimethyl t-3,t-4-di-(3,4,5-trimethoxyphenyl)cyclobutane-r-1,c-2-dicarboxylate (±)-(1R,5S,6R,7S)-6,7-bis(4-methoxyphenyl)-3-oxabicyclo[3.2.0]heptane 2-((1R,2S,3R,4R)-2-methyl-2-nitro-3,4-diphenylcyclobutyl)acetaldehyde 1α,2α-Di-(2-methoxy-phenyl)-cyclobutan-dicarbonsaeure-(3β,4β)-dimethylester o,o'-Dimethyl-β-truxillsaeuredimethylester 1,2-diisobutyryl-3,4-diphenyl-cyclobutane 3,4-bis(3,4-dimethylphenyl)cyclobutane-1,2-dicarboxylic acid (17S,18R,19S,20R)-18,19-bis(3,4-dimethylphenyl)-15,22-diazahexacyclo[21.2.2.211,14.12,6.017,20.010,30]triaconta-1(25),2,4,6(30),7,9,11(29),12,14(28),23,26-undecaene-16,21-dione 3,3-Dimethyl-2,4-diphenyl-endo-tricyclo<3.3.0.02,4>oct-6-en ((1S,2R,3S,4R)-3-Hydroxymethyl-1,4-diphenyl-bicyclo[2.2.0]hex-2-yl)-methanol (1R,7S,8R,11S)-8,11-Diphenyl-3,5-dioxa-4-thia-tricyclo[5.4.0.08,11]undecane 4,4-dioxide 4a,4b-Bis(4-methoxyphenyl)decahydrobiphenylene-1,8-dione 4a,4b-Bis(4-nitrophenyl)decahydrobiphenylene-1,8-dione 8-Methyl-4,4a-diphenyltetrahydro-1h,5h-3,4,4b-(methanetriyl)cyclopenta[1,3]cyclopropa[1,2-b]pyridin-2(3h)-one (1R,2R,3R,4R)-3,4-Bis-{2-[bis-(4-tert-butyl-phenyl)-phosphinoyl]-phenyl}-cyclobutane-1,2-dicarboxylic acid diethyl ester (S,S,S,S)-3,4-bis(2-diphenylphosphinylphenyl)-1,2-cyclobutanedimethyl di(diphenylphosphine) (1R,2R,3R,4R)-3,4-Bis-[2-(diphenyl-phosphinoyl)-phenyl]-cyclobutane-1,2-dicarboxylic acid diethyl ester (1R,2R,3R,4R)-3,4-Bis-{2-[bis-(3,5-dimethyl-phenyl)-phosphinoyl]-phenyl}-cyclobutane-1,2-dicarboxylic acid diethyl ester 4,4'-(3,4-diphenyl-cyclobutane-1,2-diyl)-bis-benzo[h]quinoline 4,4'-(3,4-diphenyl-cyclobutane-1,2-diyl)-bis-benzo[h]quinoline 3,4-diphenyl-3,4-dichlorocyclobutanodicarbox-1,2-dianilide (1S,5R,6R)-3-butyl-6,7-bis(2-hydroxyphenyl)-3-azabicyclo[3.2.0]heptane-2,4-dione (1R,2R,3R,4R)-3,4-Bis-{2-[bis-(4-methoxy-phenyl)-phosphinoyl]-phenyl}-cyclobutane-1,2-dicarboxylic acid diethyl ester 1,2-Diphenyl-1,2,2a,10b-tetrahydro-cyclobuta[l]phenanthrene all-cis-1,2-Dibenzyl-3,4-diphenylcyclobutan (3,4-diphenylcyclobutane-1,2-diyl)bis(phenylmethanone) 1,2-dibenzoyl-3,4-diphenyl-cyclobutane