设计并合成了三种新颖的杂金属环金属铱配合物Ir-Cz,Ir-DBF和Ir-Np,用作有机发光二极管(OLED)的发射极。以2-苯基-(芳族稠合噻唑)(芳族化合物为咔唑,二苯并呋喃或萘)为主要的环金属配体骨架,以扩大配体共轭长度并研究其对苯并噻吩的光物理和电化学性质以及电致发光性能的影响。铱配合物。与参考配合物双(2-苯基苯并噻唑并-N,C 2相比),包含乙酰丙酮(acac)作为辅助配体的三种杂合配合物发出橙红色至橙红色磷光,并具有很小的红移。′)(乙酰丙酮化)铱[Ir-Bt]。它们均在磷光OLED中表现出良好的性能。特别地,对于基于Ir-Np的器件,实现了54cd A -1的最大电流效率,34 lm W -1的峰值功率效率和22.2%的外部量子效率。
HETEROCYCLIC DERIVATIVE AND ORGANIC ELECTROLUMINESCENT DEVICE THEREOF
申请人:Changchun Hyperions Technology Co., Ltd.
公开号:EP4006025A1
公开(公告)日:2022-06-01
Provided are a heterocyclic derivative and an organic electroluminescent device thereof, which relates to the field of organic photoelectric materials. The heterocyclic derivative of Formula I has high electron mobility and great hole blocking performance, and thus the organic electroluminescent device prepared by using the heterocyclic derivative as the electron transport region material, especially the hole blocking material, has low drive voltage and high luminous efficiency. The organic electroluminescent device can also include a hole transport region, and the hole transport region, especially the emissive auxiliary layer, contains the triarylamine compound of Formula II. Since the electron transport region and the hole transport region of the device can effectively balance carriers, which reduces the quenching of excitons and improves the recombination probability of carriers, the device shows low drive voltage and high luminous efficiency.
本发明提供了一种杂环衍生物及其有机电致发光器件,涉及有机光电材料领域。式 I 的杂环衍生物具有很高的电子迁移率和很好的空穴阻滞性能,因此使用该杂环衍生物作为电子传输区材料,特别是空穴阻滞材料制备的有机电致发光器件具有低驱动电压和高发光效率的特点。有机电致发光器件还可以包括空穴传输区域,空穴传输区域,尤其是发射辅助层,包含式 II 的三芳基胺化合物。由于该器件的电子传输区和空穴传输区能够有效平衡载流子,从而减少了激子的淬灭,提高了载流子的重组概率,因此该器件具有低驱动电压和高发光效率的特点。
HETEROCYCLIC COMPOUND AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING SAME
申请人:Changchun Hyperions Technology Co.,Ltd.
公开号:US20220209132A1
公开(公告)日:2022-06-30
Provided are a heterocyclic compound and an organic electroluminescent device comprising the same, which relate to the field of organic electroluminescent technologies. The heterocyclic compound has advantages of good film-forming property, good thermal stability, and relatively high glass-transition temperature, and the service life of the device can be prolonged when the heterocyclic compound is applied to an organic layer of the organic electroluminescent device; meanwhile, the structure has a deep HOMO energy level so that holes can be effectively prevented from diffusing from the emissive layer to the electron transport layer and the recombination probability of the holes and electrons in the emissive layer can be effectively improved; and when the heterocyclic compound is applied to the electron transport layer or hole blocking layer, the luminous efficiency of the device can be effectively improved.
Synthesis and electrophosphorescence of novel heteroleptic iridium complexes based on thiazole-containing ligands
作者:Di Liu、Ruijuan Yao、Min Fu、Deli Li、Shufen Zhang
DOI:10.1039/c6ra04551k
日期:——
Ir-DBF and Ir-Np, were designed and synthesized for use as emitters in organic light-emitting diodes (OLEDs). 2-Phenyl-(aromatic-fused-thiazole) (the aromatic is carbazole, dibenzofuran or naphthalene) was designed as the major cyclometalating ligand framework to enlarge the ligand conjugate length and to study its influence on the photophysical and electrochemicalproperties and electroluminescent
设计并合成了三种新颖的杂金属环金属铱配合物Ir-Cz,Ir-DBF和Ir-Np,用作有机发光二极管(OLED)的发射极。以2-苯基-(芳族稠合噻唑)(芳族化合物为咔唑,二苯并呋喃或萘)为主要的环金属配体骨架,以扩大配体共轭长度并研究其对苯并噻吩的光物理和电化学性质以及电致发光性能的影响。铱配合物。与参考配合物双(2-苯基苯并噻唑并-N,C 2相比),包含乙酰丙酮(acac)作为辅助配体的三种杂合配合物发出橙红色至橙红色磷光,并具有很小的红移。′)(乙酰丙酮化)铱[Ir-Bt]。它们均在磷光OLED中表现出良好的性能。特别地,对于基于Ir-Np的器件,实现了54cd A -1的最大电流效率,34 lm W -1的峰值功率效率和22.2%的外部量子效率。
Investigating the Potency of a Phenalenyl-Based Photocatalyst under the Photoelectrochemical Condition for Intramolecular C–S Bond Formation
作者:Partha Pratim Sen、Nayan Saha、Sudipta Raha Roy
DOI:10.1021/acscatal.3c05500
日期:2024.1.19
phenalenyl-based organic photocatalyst toward photoelectrochemical intramolecular C–S bond construction reactions under mild conditions. This phenalenyl core, which contains a vacant NBMO, acts as an electron reservoir, thereby facilitating the formation of a contact ion pair with electron-rich organic systems through intramolecular electron transfer under photoexcitation and aiding in catalytic regeneration