遇光会分解,能够溶解在水中但不溶于醇类。这种物质有毒。具体来说,它微溶于水而不溶于乙醇。
水中溶解度(g/100ml):不同温度(℃)时每100毫升水中的溶解克数
用途: 用作丙烯酰胺单体光聚合作用的催化剂,适用于照相,并可用于生产光电材料和热电半导体材料。
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
三溴化镓 | gallium(III) bromide | 13450-88-9 | Br3Ga | 309.435 |
Visible‐light‐induced halide‐exchange between halide perovskite and organohalide solvents has been studied in which photoinduced electron transfer from CsPbBr3 nanocrystals (NCs) to dihalomethane solvent molecules produces halide anions via reductive dissociation, followed by a spontaneous anion‐exchange. Photogenerated holes in this process are less focused. Here, for CsPbBr3 in dibromomethane (DBM), we discover that Br radical (Br⋅) is a key intermediate resulting from the hole oxidation. We successfully trapped Br⋅ with reported methods and found that Br⋅ is continuously generated in DBM under visible light irradiation, hence imperative for catalytic reaction design. Continuous Br⋅ formation within this halide‐exchange process is active for photocatalytic [3+2] cycloaddition for vinylcyclopentane synthesis, a privileged scaffold in medicinal chemistry, with good yield and rationalized diastereoselectivity. The NC photocatalyst is highly recyclable due to Br‐based self‐healing, leading to a particularly economic and neat heterogeneous reaction where the solvent DBM also acts as a co‐catalyst in perovskite photocatalysis. Halide perovskites, notable for efficient solar energy conversion, are demonstrated as exceptional photocatalysts for Br radical‐mediated [3+2] cycloaddition. We envisage such perovskite‐induced Br radical strategy may serve as a powerful chemical tool for developing valuable halogen radical‐involved reactions.