Synthesis of Certain Heterodimers Expected as HIV-1 Reverse Transcriptase Inhibitors
摘要:
Expected for the ability to inhibit HIV replication, we report the synthesis of two heterodimers of the general formula: [2NRTI]-C5-GLY-SUCCINYL-Npiperazinyl-[NNRTI] (18, 19) containing both a Nucleoside Reverse Transcriptase Inhibitor (10, 11) and a Non-Nucleoside Reverse Transcriptase Inhibitor (8) [Trovirdine Analogue belonging of the phenethyl thiazolyl thiourea class] connected through the "succinyl-glycine" spontaneously cleavable linker.
Structure-based design of N-[2-(1-piperidinylethyl)]-N′-[2-(5-bromopyridyl)]-thiourea and N-[2-(1-piperazinylethyl)]-N′-[2-(5-bromopyridyl)]-thiourea as potent non-nucleoside inhibitors of HIV-1 reverse transcriptase
摘要:
A novel computer model of the HIV reverse transcriptase (RT) non-nucleoside inhibitor (NNI) binding pocket, which was generated using high resolution crystal structure information from 9 individual RT/NNI complexes, revealed previously unrecognized ligand derivatization sites for phenethylthiazolylthiourea (PETT) derivatives. Spatial gaps surrounding the pyridyl ring of the active PETT derivative trovirdine were discovered during modeling procedures. Docking studies using the computer-generated model of the binding pocket (composite binding pocket) suggested that the replacement of the planar pyridyl ring of trovirdine with a nonplanar piperidinyl or piperazinyl ring, which occupy larger volumes, would better fill the spacious Wing 2 region of the butterfly-shaped NNI binding pocket. The anti-HIV activity of the synthesized heterocyclic compounds N-[2-(1-piperidinylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea and N-[2-(1-piperazinylethyl)]-N'-[2(5-bromopyridyl)]-thiourea was examined in HTLVIIIB-infected peripheral blood mononuclear cells. Both compounds were more potent than trovirdine and abrogated HIV replication at nanomolar concentrations without any evidence of cytotoxicity. (C) 1998 Elsevier Science Ltd. All rights reserved.
SYNTHESIS AND ANTI-HIV ACTIVITY OF [D4U]-[TROVIRDINE ANALOGUE] AND [D4T]-[TROVIRDINE ANALOGUE] HETERODIMERS AS INHIBITORS OF HIV-1 REVERSE TRANSCRIPTASE
A series of eleven heterodimers containing both a nucleoside analogue (d4U, d4T) and a non-nucleoside type inhibitor (Trovirdine analogue) were synthesized and evaluated for their ability to inhibit HIV replication. Unfortunately, the (N-3)d4U-Trovirdine conjugates (9a-e) and (N-3)d4T-Trovirdine conjugates (10a-f) were found to be inactive suggesting that the two individual inhibitor compounds do not