Synthesis and Conformational Dynamics of the Reported Structure of Xylopyridine A
摘要:
Natural products have served as a rich source for the discovery of new nucleic acid targeting molecules for more than half a century. However, our ability to design molecules that bind nucleic acid motifs in a sequence- and/or structure-selective manner is still in its infancy. Xylopyridine A, a naturally occurring molecule of unprecedented architecture, has been found to bind DNA by a unique mode of intercalation. Here we show that the structure proposed for xylopyridine A is not consistent with the characterization in the original isolation report and does not bind B-form DNA. Instead, we report that the originally proposed structure for xylopyridine A represents a new class of conformationally dynamic structure-selective quadruplex nucleic acid binder. The unique molecular conformation locks out nonspecific intercalative binding modes and provides a starting point for the design of a new class of structure-specific nucleic acid binder.
Synthesis and Conformational Dynamics of the Reported Structure of Xylopyridine A
摘要:
Natural products have served as a rich source for the discovery of new nucleic acid targeting molecules for more than half a century. However, our ability to design molecules that bind nucleic acid motifs in a sequence- and/or structure-selective manner is still in its infancy. Xylopyridine A, a naturally occurring molecule of unprecedented architecture, has been found to bind DNA by a unique mode of intercalation. Here we show that the structure proposed for xylopyridine A is not consistent with the characterization in the original isolation report and does not bind B-form DNA. Instead, we report that the originally proposed structure for xylopyridine A represents a new class of conformationally dynamic structure-selective quadruplex nucleic acid binder. The unique molecular conformation locks out nonspecific intercalative binding modes and provides a starting point for the design of a new class of structure-specific nucleic acid binder.
[EN] NEW IMAGING AGENTS AND METHODS OF IDENTIFYING SAME<br/>[FR] NOUVEAUX AGENTS D'IMAGERIE ET PROCÉDÉS DE LEUR IDENTIFICATION
申请人:UNIV PENNSYLVANIA
公开号:WO2015143349A1
公开(公告)日:2015-09-24
The present invention includes a novel method capable of identifying a compound as an imaging agent using a DAZAX-based scaffold or derivative thereof. The present invention further includes novel imaging agents. The present invention further includes a method of modifying a DAZAX-based scaffold or derivative thereof. The present invention further includes a method for imaging a sample.
New Imaging Agents and Methods of Identifying Same
申请人:The Trustees of the University of Pennsylvania
公开号:US20170183356A1
公开(公告)日:2017-06-29
The present invention includes a novel method capable of identifying a compound as an imaging agent using a DAZAX-based scaffold or derivative thereof. The present invention further includes novel imaging agents. The present invention further includes a method of modifying a DAZAX-based scaffold or derivative thereof. The present invention further includes a method for imaging a sample.
Synthesis and Conformational Dynamics of the Reported Structure of Xylopyridine A
作者:Robert-André F. Rarig、Mai N. Tran、David M. Chenoweth
DOI:10.1021/ja404737q
日期:2013.6.19
Natural products have served as a rich source for the discovery of new nucleic acid targeting molecules for more than half a century. However, our ability to design molecules that bind nucleic acid motifs in a sequence- and/or structure-selective manner is still in its infancy. Xylopyridine A, a naturally occurring molecule of unprecedented architecture, has been found to bind DNA by a unique mode of intercalation. Here we show that the structure proposed for xylopyridine A is not consistent with the characterization in the original isolation report and does not bind B-form DNA. Instead, we report that the originally proposed structure for xylopyridine A represents a new class of conformationally dynamic structure-selective quadruplex nucleic acid binder. The unique molecular conformation locks out nonspecific intercalative binding modes and provides a starting point for the design of a new class of structure-specific nucleic acid binder.