Discovery and Structure−Activity Relationship of N-(Ureidoalkyl)-Benzyl-Piperidines As Potent Small Molecule CC Chemokine Receptor-3 (CCR3) Antagonists
摘要:
Structure-activity relationship (SAR) studies of initial screening hits from our corporate library of compounds and a structurally related series of CCR1 receptor antagonists were used to determine that an N-(alkyl)benzylpiperidine is an essential pharmacophore for selective CCR3 antagonists. Further SAR studies that introduced N-(ureidoalkyl) substituents improved the binding potency of these compounds from the micromolar to the low nanomolar range. This new series of compounds also displays highly potent, in vitro functional CCR3-mediated antagonism of eotaxin-induced Ca2+ mobilization and chemotaxis of human eosinophils.
Discovery and Structure−Activity Relationship of N-(Ureidoalkyl)-Benzyl-Piperidines As Potent Small Molecule CC Chemokine Receptor-3 (CCR3) Antagonists
摘要:
Structure-activity relationship (SAR) studies of initial screening hits from our corporate library of compounds and a structurally related series of CCR1 receptor antagonists were used to determine that an N-(alkyl)benzylpiperidine is an essential pharmacophore for selective CCR3 antagonists. Further SAR studies that introduced N-(ureidoalkyl) substituents improved the binding potency of these compounds from the micromolar to the low nanomolar range. This new series of compounds also displays highly potent, in vitro functional CCR3-mediated antagonism of eotaxin-induced Ca2+ mobilization and chemotaxis of human eosinophils.
Discovery and Structure−Activity Relationship of N-(Ureidoalkyl)-Benzyl-Piperidines As Potent Small Molecule CC Chemokine Receptor-3 (CCR3) Antagonists
作者:George V. De Lucca、Ui T. Kim、Curt Johnson、Brian J. Vargo、Patricia K. Welch、Maryanne Covington、Paul Davies、Kimberly A. Solomon、Robert C. Newton、George L. Trainor、Carl P. Decicco、Soo S. Ko
DOI:10.1021/jm0201767
日期:2002.8.1
Structure-activity relationship (SAR) studies of initial screening hits from our corporate library of compounds and a structurally related series of CCR1 receptor antagonists were used to determine that an N-(alkyl)benzylpiperidine is an essential pharmacophore for selective CCR3 antagonists. Further SAR studies that introduced N-(ureidoalkyl) substituents improved the binding potency of these compounds from the micromolar to the low nanomolar range. This new series of compounds also displays highly potent, in vitro functional CCR3-mediated antagonism of eotaxin-induced Ca2+ mobilization and chemotaxis of human eosinophils.