An efficient method for the dehydrogenative coupling of silanes with alcohols under photocatalysis was developed. The reaction proceeded in the presence of Ru(bpy)3Cl2 (0.5 mol%) under visible light irradiation in acetonitrile at room temperature. The developed methodology was also applicable for the synthesis of silanols using water as a coupling partner.
Highly Selective Hydroxylation and Alkoxylation of Silanes: One-Pot Silane Oxidation and Reduction of Aldehydes/Ketones
作者:Nianhua Luo、Jianhua Liao、Lu Ouyang、Huiling Wen、Yuhong Zhong、Jitian Liu、Weiping Tang、Renshi Luo
DOI:10.1021/acs.organomet.9b00716
日期:2020.1.13
An efficient chemoselective iridium-catalyzed method for the hydroxylation and alkoxylation of organosilanes to generate hydrogen gas and silanols or silyl ethers was developed. A variety of sterically hindered silanes with alkyl, aryl, and ether groups were tolerated. Furthermore, this atom-economical catalytic protocol can be used for the synthesis of silanediols and silanetriols. A one-pot silane
Highly Selective Oxidation of Organosilanes to Silanols with Hydrogen Peroxide Catalyzed by a Lacunary Polyoxotungstate
作者:Ryo Ishimoto、Keigo Kamata、Noritaka Mizuno
DOI:10.1002/anie.200904694
日期:2009.11.9
Silanol synthesis: Divacant lacunary polyoxotungstate (nBu4N+)4[γ‐SiW10O34(H2O)2] (I) is an efficient homogeneous catalyst for highlyselectiveoxidation of organosilanes to silanols with 30–60 % aqueous H2O2. Various kinds of silanes 1 containing aryl, alkyl, alkenyl, alkynyl, and alkoxy groups are chemoselectively converted into the corresponding silanols 2 in high yields with only one equivalent
硅烷醇合成:Divacant缺位polyoxotungstate(Ñ卜4 Ñ +)4 [γ-硅钨酸10 ø 34(H 2 O)2 ](我)是一种有效的均相催化剂用于向硅烷醇的有机硅烷的高度选择性氧化用30-60%含水H 2 O 2。含有芳基,烷基,烯基,炔基和烷氧基的各种硅烷1仅以一当量的H 2 O 2水溶液就可以高选择性地化学选择性转化为相应的硅烷醇2。 相对于基板。
Metal-free visible-light-mediated aerobic oxidation of silanes to silanols
作者:Jing Wang、Bin Li、Li-Chuan Liu、Chenran Jiang、Tao He、Wei He
DOI:10.1007/s11426-018-9289-9
日期:2018.12
Oxidation of silanes into silanols using water/air has attracted considerable attention. The known methods with no exception required a metal catalyst. Herein we report the first metal-free method: 2 mol% Rose Bengal as the catalyst, air (O2) as the oxidant, water as the additive and under visible light irradiation. While this method produces various silanols in a simple, cost-effective, efficient