Design of a Highly Bistable Photoswitchable Tethered Ligand for Rapid and Sustained Manipulation of Neurotransmission
摘要:
Photoswitchable neurotransmitter receptors are powerful tools for precise manipulation of neural signaling. However, their applications for slow or long-lasting biological events are constrained by fast thermal relaxation of cis-azobenzene. We address this issue by modifying the ortho positions of azobenzene used in the tethered ligand. In cultured cells and intact brain tissue, conjugating inhibitory neurotransmitter receptors with one of the derivatives, dMPC1, allows bidirectional receptor control with 380 and 500 nm light. Moreover, the receptors can be locked in either an active or an inactive state in darkness after a brief pulse of light. This strategy thus enables both rapid and sustained manipulation of neurotransmission, allowing optogenetic interrogation of neural functions over a broad range of time scales.
Photoreactive regulator of protein function and methods of use thereof
申请人:The Regents of the University of California
公开号:US09097707B2
公开(公告)日:2015-08-04
The present invention provides a synthetic regulator of protein function, which regulator is a light-sensitive regulator. The present invention further provides a light-regulated polypeptide that includes a subject synthetic regulator. Also provided are cells and membranes comprising a subject light-regulated polypeptide. The present invention further provides methods of modulating protein function, involving use of light. The present invention further provides methods of identifying agents that modulate protein function.
Design of a Highly Bistable Photoswitchable Tethered Ligand for Rapid and Sustained Manipulation of Neurotransmission
作者:Wan-Chen Lin、Ming-Chi Tsai、Rajit Rajappa、Richard H. Kramer
DOI:10.1021/jacs.8b03942
日期:2018.6.20
Photoswitchable neurotransmitter receptors are powerful tools for precise manipulation of neural signaling. However, their applications for slow or long-lasting biological events are constrained by fast thermal relaxation of cis-azobenzene. We address this issue by modifying the ortho positions of azobenzene used in the tethered ligand. In cultured cells and intact brain tissue, conjugating inhibitory neurotransmitter receptors with one of the derivatives, dMPC1, allows bidirectional receptor control with 380 and 500 nm light. Moreover, the receptors can be locked in either an active or an inactive state in darkness after a brief pulse of light. This strategy thus enables both rapid and sustained manipulation of neurotransmission, allowing optogenetic interrogation of neural functions over a broad range of time scales.