摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

黑洞猝灭剂-2,BHQ-2ACID | 1214891-99-2

中文名称
黑洞猝灭剂-2,BHQ-2ACID
中文别名
——
英文名称
BHQ-2 carboxylic acid
英文别名
4-[[4-[2,5-Dimethoxy-4-(4-nitrophenylazo)phenylazo]phenyl](methyl)amino]butyric acid;4-[4-[[2,5-dimethoxy-4-[(4-nitrophenyl)diazenyl]phenyl]diazenyl]-N-methylanilino]butanoic acid
黑洞猝灭剂-2,BHQ-2ACID化学式
CAS
1214891-99-2
化学式
C25H26N6O6
mdl
——
分子量
506.518
InChiKey
UDGUGZTYGWUUSG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    736.3±60.0 °C(Predicted)
  • 密度:
    1.30±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    5.2
  • 重原子数:
    37
  • 可旋转键数:
    11
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.24
  • 拓扑面积:
    154
  • 氢给体数:
    1
  • 氢受体数:
    11

制备方法与用途

简介

BHQ-2 酸(黑洞猝灭剂-2)被归类为暗猝灭剂(非荧光发色团),适用于各种荧光共振能量转移(FRET)DNA检测探针中的猝灭剂部分。

产品特点

BHQ-2 的吸光度为579 nm,有效吸光度范围在550至650 nm之间。它作为与黄橙色部分(波长557至617 nm)发射荧光的染料配对使用的猝灭剂。该组染料的发射光谱与BHQ-2 的吸收光谱充分重叠,从而高效地熄灭前者的荧光。

反应信息

  • 作为反应物:
    描述:
    黑洞猝灭剂-2,BHQ-2ACID 在 O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate 、 三乙胺三氟乙酸 作用下, 以 二氯甲烷N,N-二甲基甲酰胺 为溶剂, 反应 4.0h, 生成
    参考文献:
    名称:
    用β-半乳糖苷酶激活的光敏剂选择性光动力根除衰老细胞
    摘要:
    设计并合成了一种β-半乳糖苷酶反应性光敏剂。它包含一个半乳糖基底物、一个基于硼二吡咯亚甲基的光敏单元和一个黑洞猝灭剂 2通过AB 2型自消接头连接。这种新型光敏剂可以被衰老细胞中与衰老相关的 β-半乳糖苷酶选择性激活,从而恢复荧光发射并通过光动力作用有效杀死细胞。
    DOI:
    10.1039/d2cc06661k
点击查看最新优质反应信息

文献信息

  • A Covalent Reporter of β-Lactamase Activity for Fluorescent Imaging and Rapid Screening of Antibiotic-Resistant Bacteria
    作者:Qing Shao、Yan Zheng、Xueming Dong、Kai Tang、Xiaomei Yan、Bengang Xing
    DOI:10.1002/chem.201301654
    日期:2013.8.12
    β‐lactamase, and thus facilitated the covalent labeling of drug resistant bacterial strains. SDS electrophoresis and MALDI‐TOF mass spectrometry characterization confirmed that these probes were sensitive and specific to β‐lactamase and could therefore serve for covalent and localized fluorescence labeling of the enzyme structure. Moreover, this β‐lactamase‐induced covalent labeling provides quantitative
    由于复杂的耐药机制和费时的测试方法,细菌对抗生素的耐药性在对抗严重的传染病方面提出了巨大的临床挑战。在复杂环境中,化学反应指导的耐药相关细菌蛋白的共价标记为深入理解赋予耐药性的生物学基础和开发有效的诊断方法提供了巨大的机会。在本研究中,已基于荧光共振能量转移(FRET)设计并制备了三种用于耐药菌标记的荧光试剂LRBL1-3。解探针可以充当反应性亲电子试剂来附着酶β-内酰胺酶,从而促进了耐药细菌菌株的共价标记。SDS电泳和MALDI-TOF质谱表征证实了这些探针对β-内酰胺酶敏感且特异,因此可用于酶结构的共价和局部荧光标记。此外,这种β-内酰胺酶诱导的共价标记可以通过高分辨率流式细胞术对耐药菌种群(低至5%)进行定量分析,并可以进行单细胞检测并直接观察耐药病原体中细菌酶的活性。这种方法为临床研究和微生物研究提供了广阔的前景。这种β-内酰胺酶诱导的共价标记可通过高分辨率流式细胞术对耐药菌种群
  • A Dual‐Color Fluorescent Probe Allows Simultaneous Imaging of Main and Papain‐like Proteases of SARS‐CoV‐2‐Infected Cells for Accurate Detection and Rapid Inhibitor Screening
    作者:Yong Cheng、Raina M. Borum、Alex E. Clark、Zhicheng Jin、Colman Moore、Pavla Fajtová、Anthony J. O'Donoghue、Aaron F. Carlin、Jesse V. Jokerst
    DOI:10.1002/anie.202113617
    日期:2022.2.21
    The simultaneous visualization of crucial proteases within SARS-CoV-2-infected cells can be a significant benefit for the accurate detection of virus and rapid screening of inhibitors as well as for understanding the viral lifecycle. The catalytic efficiency, intracellular enzyme activity, and distribution of SARS-CoV-2 main protease and papain-like protease have now been exploited using peptide-based
    SARS-CoV-2感染细胞内关键蛋白酶的同步可视化对于准确检测病毒和快速筛选抑制剂以及了解病毒生命周期具有重大意义。现在已使用基于肽的双色 FRET 探针及其抑制剂来研究 SARS-CoV-2 主要蛋白酶木瓜蛋白酶蛋白酶的催化效率、细胞内酶活性和分布。
  • A versatile fluorescence-quenched substrate for quantitative measurement of glucocerebrosidase activity within live cells
    作者:Matthew C. Deen、Yanping Zhu、Christina Gros、Na Na、Pierre-André Gilormini、David L. Shen、Sandeep Bhosale、Nadia Anastasi、RuiQi Wang、Xiaoyang Shan、Eva Harde、Ravi Jagasia、Francis C. Lynn、David J. Vocadlo
    DOI:10.1073/pnas.2200553119
    日期:2022.7.19

    Loss of activity of the lysosomal glycosidase β-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.

    溶酶体糖苷酶β-葡萄糖酸酶(GCase)活性的丧失导致了溶酶体贮存疾病高氏病(GD),已成为帕森病(PD)和带有Lewy小体的痴呆症发展的最大遗传风险因素。人们对GCase功能失调如何导致这些疾病非常感兴趣,但存在影响溶酶体GCase活性的内源性细胞因素,这使得对这一领域的全面理解进展复杂。事实上,这些因素被认为是导致患者之间GBA突变可变穿透度高的原因之一。因此,需要强有力的方法定量测量溶酶体内GCase活性,以推进这一领域的研究,并开发临床检测来监测疾病进展和评估GCase定向治疗。在这里,我们报告了一种选择性荧光猝灭底物LysoFQ-GBA,它可以测量活细胞内溶酶体内源性GCase活性平。LysoFQ-GBA是一个敏感的工具,可用于使用荧光显微镜或流式细胞术研究GCase活性的化学或遗传扰动。我们使用各种细胞类型验证了使用LysoFQ-GBA进行的测量的定量性质,并证明它准确地报告了GCase抑制剂的靶标作用和细胞的GBA等位基因状态。此外,通过比较GD、PD和对照患者衍生的组织,我们展示了单核细胞、神经前体细胞和神经元中溶酶体GCase活性之间的密切相关性。因此,使用LysoFQ-GBA分析临床血样可能提供神经组织中溶酶体GCase活性的替代标志物。
  • Fluorescence-Quenched Substrates for Live Cell Imaging of Human Glucocerebrosidase Activity
    作者:Anuj K. Yadav、David L. Shen、Xiaoyang Shan、Xu He、Allison R. Kermode、David J. Vocadlo
    DOI:10.1021/ja5106738
    日期:2015.1.28
    Deficiency of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) leads to abnormal accumulation of glucosyl ceramide in lysosomes and the development of the lysosomal storage disease known as Gaucher's disease. More recently, mutations in the GBA1 gene that encodes GCase have been uncovered as a major genetic risk factor for Parkinson's disease (PD). Current therapeutic strategies to increase GCase activity in lysosomes involve enzyme replacement therapy (ERT) and molecular chaperone therapy. One challenge associated with developing and optimizing these therapies is the difficulty in determining levels of GCase activity present within the lysosomes of live cells. Indeed, visualizing the activity of endogenous levels of any glycoside hydrolases, including GCase, has proven problematic within live mammalian cells. Here we describe the successful modular design and synthesis of fluorescence-quenched substrates for GCase. The selection of a suitable fluorophore and quencher pair permits the generation of substrates that allow convenient time-dependent monitoring of endogenous GCase activity within cells as well as localization of activity within lysosomes. These efficiently quenched (∼99.9%) fluorescent substrates also permit assessment of GCase inhibition in live cells by either confocal microscopy or high content imaging. Such substrates should enable improved understanding of GCase in situ as well the optimization of small-molecule chaperones for this enzyme. These findings also suggest routes to generate fluorescence-quenched substrates for other mammalian glycoside hydrolases for use in live cell imaging.
查看更多

同类化合物

黑洞猝灭剂-2,BHQ-2ACID 麦角甾烷-6-酮,2,3,22,23-四羟基-,(2a,3a,5a,22S,23S,24S)- 颜料橙61 阿利新黄GXS 阳离子红X-GTL 阳离子红5BL 阳离子橙RN 阳离子橙GLH 间甲基红 镨(3+)丙烯酰酸酯 镍酸酯(1-),[3-羟基-4-[(4-甲基-3-硫代苯基)偶氮]-2-萘羧酸根(3-)]-,氢 锂3-({4-[(4-羟基苯基)偶氮]-5-甲氧基-2-甲基苯基}偶氮)苯磺酸酯 钴,[二[m-[[1,2-二苯基-1,2-乙二酮1,2-二(肟酸根-kO)](2-)]]四氟二硼酸根(2-)-kN1,kN1',k2,kN2']-,(SP-4-1)- 钠5-氯-2-羟基-3-[(2-羟基-4-{[(4-甲基苯基)磺酰基]氧基}苯基)偶氮]苯磺酸酯 钠5-[[3-[[5-[[4-[[[4-[(4,5-二氢-3-甲基-5-氧代-1H-吡唑-4-基)偶氮]苯基]氨基]羰基]苯基]偶氮]-2,4-二羟基苯基]偶氮]-4-羟基苯基]偶氮]水杨酸盐 钠4-[(4-氨基苯基)偶氮]苯甲酸酯 钠4-[(4-{[4-(二乙基氨基)苯基]偶氮}苯基)偶氮]苯磺酸酯 钠4-[(4-{[2-羟基-5-(2-甲基-2-丙基)苯基]偶氮}苯基)偶氮]苯磺酸酯 钠4-({3-甲氧基-4-[(4-甲氧基苯基)偶氮]苯基}偶氮)苯磺酸酯 钠3-[4-(2-羟基-5-甲基-苯基)偶氮苯基]偶氮苯磺酸酯 钠3-({5-甲氧基-4-[(4-甲氧基苯基)偶氮]-2-甲基苯基}偶氮)苯磺酸酯 钠3-({4-[(4-羟基-2-甲基苯基)偶氮]-3-甲氧基苯基}偶氮)苯磺酸酯 金莲橙O 重氮基烯,苯基[4-(三氟甲基)苯基]- 重氮基烯,二[4-(1-甲基乙基)苯基]-,(Z)- 重氮基烯,二[4-(1-甲基乙基)苯基]-,(E)- 重氮基烯,[4-[(2-乙基己基)氧代]-2,5-二甲基苯基](4-硝基苯基)- 重氮基烯,1,2-二(4-丙氧基苯基)-,(1E)- 重氮基烯,(2-氯苯基)苯基- 酸性金黄G 酸性棕S-BL 酸性媒染棕 酸性媒介棕6 酸性媒介棕48 酸性媒介棕4 酸性媒介棕24 邻氨基偶氮甲苯 达布氨乙基甲硫基磺酸盐 赛甲氧星 茴香酸盐己基 茜素黄 R 钠盐 苯重氮化,2-甲氧基-5-甲基-4-[(4-甲基-2-硝基苯基)偶氮]-,氯化 苯酰胺,4-[4-(2,3-二氢-1,4-苯并二噁英-6-基)-5-(2-吡啶基)-1H-咪唑-2-基]- 苯酚,4-(1,1-二甲基乙基)-2-(苯偶氮基)- 苯酚,2-甲氧基-4-[(4-硝基苯基)偶氮]- 苯胺棕 苯胺,4-[(4-氯-2-硝基苯基)偶氮]- 苯磺酸,3,3-6-(4-吗啉基)-1,3,5-三嗪-2,4-二基二亚氨基2-(乙酰基氨基)-4,1-亚苯基偶氮二-,盐二钠 苯磺酸,2-[(4-氨基-2-羟基苯基)偶氮]- 苯甲酸,5-[[4-[(乙酰基氨基)磺酰]苯基]偶氮]-2-[[3-(三氟甲基)苯基]氨基]-(9CI)

相关功能分类