摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(n-buthylstannyl)tetrathiafulvalene | 139698-09-2

中文名称
——
中文别名
——
英文名称
(n-buthylstannyl)tetrathiafulvalene
英文别名
tributylstannyltetrathiafulvalene
(n-buthylstannyl)tetrathiafulvalene化学式
CAS
139698-09-2
化学式
C18H30S4Sn
mdl
——
分子量
493.41
InChiKey
IKWMXQFNAMHWHN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    436.1±55.0 °C(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    8.3
  • 重原子数:
    23
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    101
  • 氢给体数:
    0
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    参考文献:
    名称:
    新型自旋轴承TTF配体的合成与表征
    摘要:
    描述了两个新的带有吡啶基取代基和1,5'-二甲基-6-氧过二唑基的四硫富瓦烯(TTF)衍生物的合成和表征。通过单(三丁基锡烷基)四硫富富瓦烯(3)和合适的甲酰基吡啶基卤化物(4)之间的钯催化的交叉偶联反应制备TTF-吡啶和联吡啶醛。通过将碳酸的双(1-甲基肼)与带有吡啶基醛的TTF缩合来制备自由基前体,即相应的1,2,4,5-四氮烷。用1,4-苯醌氧化四氮烷8和9,得到供体基团1和2与对苯二酚1:1配合物。两种络合物均在固态下稳定,并且其电子性能已通过EPR,循环伏安法和UV / vis光谱学进行了表征。两种化合物的TTF核均被化学和电化学氧化,得到相应的阳离子双自由基。通过循环伏安法,紫外可见光谱和初步的EPR测量,已经探究了两个供体自由基的电子性质。
    DOI:
    10.1021/jo0525938
  • 作为产物:
    描述:
    四硫富瓦烯三丁基氯化锡 在 LiC4H9 作用下, 以 四氢呋喃 为溶剂, 以75%的产率得到(n-buthylstannyl)tetrathiafulvalene
    参考文献:
    名称:
    钯催化的三烷基锡烷基四硫富瓦烯与芳基卤化物的偶联
    摘要:
    三烷基锡烷基四硫富瓦烯经过钯催化的交叉和均偶联反应,得到芳基取代的四硫富瓦烯和双四硫富瓦烯。该方法已应用于对-亚苯基双四硫富瓦烯和2,5-噻吩二基双四硫富瓦烯的合成
    DOI:
    10.1039/c39920000158
点击查看最新优质反应信息

文献信息

  • Photofunctional Conductors Based on TTF‐BODIPY Dyads Bearing <i>p</i> ‐Phenylene and <i>p</i> ‐Phenylenevinylene Spacers
    作者:Keijiro Tsujimoto、Reiko Ogasawara、Takahiro Nakagawa、Hideki Fujiwara
    DOI:10.1002/ejic.201400103
    日期:2014.8
    films. In the crystalline samples of three dyads, the TTF moieties formed 1D conducting columns through the dimerization of the TTF moieties and relatively strong side-by-side interactions between neighbouring stacking columns. All the neutral crystals exhibited photoinduced conductivity along the stacking direction of the TTF moieties and the crystal with the weakest dimerization and the strongest side-by-side
    本文描述了包含四硫富瓦烯 (TTF) 和 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) 部分的新型 D-A 二元组的合成、晶体结构分析和物理性质对亚苯基或对亚苯基亚乙烯基间隔物,用于开发可在可见光区域显示光功能性的光响应有机导电材料。在 CHCl3 中记录的合成二元组的吸收光谱在 505 nm 处显示出来自 BODIPY 部分的强吸收和在 550 nm 附近的弱电荷转移吸收。在所有二元组中,对应于 BODIPY 部分的荧光被抑制到不到一半,这表明形成了光诱导电荷转移状态。旋涂到 ITO 涂层玻璃基板上的二元组的所有薄膜样品都表现出与薄膜吸收光谱相关的电流产生。在三个二元组的结晶样品中,TTF 部分通过 TTF 部分的二聚化和相邻堆叠柱之间相对强的并排相互作用形成一维导电柱。所有中性晶体都表现出沿 TTF 部分堆叠方向的光诱导导电性,
  • Long-Lived Charge Separation in Novel Axial Donor-Porphyrin-Acceptor Triads Based on Tetrathiafulvalene, Aluminum(III) Porphyrin and Naphthalenediimide
    作者:Prashanth K. Poddutoori、Niloofar Zarrabi、Andrey G. Moiseev、Roger Gumbau-Brisa、Serguei Vassiliev、Art van der Est
    DOI:10.1002/chem.201202995
    日期:2013.2.25
    4‐(n‐pentyl)‐4′‐cyanobiphenyl (5CB), a spin‐polarized transient EPR spectrum that is readily assigned to the weakly coupled radical pair TTF.+NDI.− is obtained. The initial polarization pattern indicates that the charge separation occurs through the singlet channel and that singlet–triplet mixing occurs in the primary radical pair. At later time the polarization pattern inverts as a result of depopulation
    据报道有两个自组装的超分子供体-受体三联体,包括三价卟啉(AlPor)和轴向结合的萘二酰亚胺(NDI)作为受体,四硫富瓦烯(TTF)作为次级供体。在三单元组中,NDI和TTF单元分别通过共价键和配位键连接到卟啉相对面上的Al III。荧光研究表明,卟啉的最低激发单重态通过电子转移到NDI和空穴转移到TTF猝灭。在二氯甲烷中,空穴转移至TTF占主导,而在苄腈(BN)中,电子转移至NDI是主要的淬灭途径。在液晶溶剂的向列相中4-(n-戊基)-4'-氰基联苯(5CB),它是一种自旋极化的瞬态EPR谱,可以轻松分配给弱耦合的自由基对TTF 。+ NDI .-。初始极化模式表明,电荷分离是通过单线态通道发生的,并且单线态-三重态混合发生在初级自由基对中。在稍后的时间,由于通过重组为基态而使具有单重态特征的状态减少,极化模式反转。TTF 。+ NDI .-的单重态寿命估计为200–300 ns,而X波段EPR光谱仪在大约350
  • Synthesis and some properties of bis- and tetrakis(triphenylstannyl) tetrathiafulvalenes and tetraiodotetrathiafulvalene
    作者:Masaru Sato、Masa-aki Sensui
    DOI:10.1016/s0022-328x(96)06913-6
    日期:1997.6
    Bis- and tetrakis(triphenylstannyl)tetrathiafulvalenes were prepared from the corresponding lithio-derivatives and chlorotriphenyltin, and their structures were determined by X-ray analysis. Their absorption maxima in the electronic spectrum showed a bathochromic shift. Their redox potentials shifted only a little to a lower region. The charge-transfer complex of the tetra-substituted derivative with
    由相应的硫代衍生物和氯代三苯基锡制备了双(三苯基锡烷基)和四(三苯基锡烷基)四硫富瓦烯,并通过X射线分析确定了它们的结构。它们在电子光谱中的吸收最大值显示出红移。它们的氧化还原电势仅转移到较低的区域。分离了四取代衍生物与TCNQ的电荷转移络合物。双(三甲基锡烷基)四硫富瓦烯不与(η- Cp)(CO)2 FeI反应,与(COD)PtCl 2反应,然后添加三丁基膦,得到复杂的混合物,由该混合物可以得到(C 2 H 2 S 2)铂(PBu 3)2分离产率低。通过X射线衍射确认了结构。还报道了方便的四硫富瓦烯和四碘四硫富瓦烯的制备方法。
  • Development of Organic Conductors with Self-Assembled Architectures of Biomolecules: Synthesis and Crystal Structures of Nucleobase-Functionalized Tetrathiafulvalene Derivatives
    作者:Tsuyoshi Murata、Eigo Miyazaki、Suguru Maki、Yoshikazu Umemoto、Makoto Ohmoto、Kazuhiro Nakasuji、Yasushi Morita
    DOI:10.1246/bcsj.20120102
    日期:2012.9.15
    Supramolecular assemblies and charge-transfer complexes of new nucleobase-functionalized tetrathiafulvalene (TTF) derivatives were investigated. Stille-type cross-coupling reaction between tributylstannylated TTF and iodinated nucleobase derivatives yielded mono- and bisnucleobase-substituted TTF derivatives. The electrochemical measurements revealed that the uracil- and cytosine-substituted derivatives possessed strong electron-donating abilities comparable to that of pristine TTF, and the electron-deficient features of adenine and guanine caused high potential shifts of the oxidation waves. In the solution-state electronic spectra, the intramolecular charge-transfer absorption bands were observed at a low-energy region. In the crystal structures, the donor molecules constructed supramolecular polymers by the complementary hydrogen-bonds inherent in nucleobases; a one-dimensional zigzag chain in the adenine-substituted derivative and a linear chain in the bis(uracil)-substituted derivative. The tetracyanoquinodimethane complexes of uracil- and cytosine-substituted derivatives possessed a mixed valence state exhibiting high conductivities (room-temperature conductivities = 10−2–10−1 S cm−1). In the cyananilic acid complexes, cytosine- and adenine-substituted TTF acted as electron-donors and proton-acceptors to yield simultaneous charge- and proton-transfer complexes.
    研究了新型核苷碱功能化的四硫富瓦烯(TTF)衍生物的超分子聚集体和电荷转移复合物。通过斯蒂尔反应,三正丁基锡化的TTF与碘化核苷碱衍生物之间进行了交叉偶联反应,产生了单核苷碱和双核苷碱取代的TTF衍生物。电化学测量表明,取代有尿嘧啶和胞嘧啶的衍生物具有强的电子给体能力, comparable 于纯净的TTF,而腺嘌呤和鸟嘌呤的电子缺乏特征导致了氧化波的高电位移。在溶液态的电子光谱中,观察到了低能量区域的分子内电荷转移吸收带。在晶体结构中,供体分子通过核苷碱固有的互补氢键构建了超分子聚合物;腺嘌呤取代的衍生物形成了一维之字形链,而二尿嘧啶取代的衍生物形成了一条线性链。取代有尿嘧啶和胞嘧啶的四氰基奎烯和二烯复合物具有混合价态,表现出高电导率(室温电导率 = 10−2–10−1 S cm−1)。在氰苯基酸复合物中,胞嘧啶和腺嘌呤取代的TTF作为电子供体和质子受体,形成了同时进行电荷和质子转移的复合物。
  • Palladium-catalysed coupling of trialkylstannyltetrathiafulvalenes with aryl halides
    作者:Masahiko Iyoda、Yoshiyuki Kuwatani、Nubuhiko Ueno、Masaji Oda
    DOI:10.1039/c39920000158
    日期:——
    undergo palladium-catalysed cross-and homo-coupling reactions to give aryl-substituted tetrathiafulvalenes and bitetrathiafulvalene; the methodology has been applied to the synthesis of p-phenylenebistetrathiafulvalene and 2,5-thiophenediylbistetrathiafulvalene
    三烷基锡烷基四硫富瓦烯经过钯催化的交叉和均偶联反应,得到芳基取代的四硫富瓦烯和双四硫富瓦烯。该方法已应用于对-亚苯基双四硫富瓦烯和2,5-噻吩二基双四硫富瓦烯的合成
查看更多

同类化合物

四硫杂富瓦烯-D4 四硫富瓦烯 四(戊硫代)四硫富瓦烯 四(十八烷基硫代)四硫富瓦烯 四(乙硫基)四硫富瓦烯[有机电子材料] 双(亚乙基二硫醇)四硫代富瓦烯 双(三亚甲基二硫代)四硫富瓦烯 [1,3]二噻唑并[4,5-d]-1,3-二噻唑,2,5-二(1,3-二硫醇-2-亚基)- 5-甲基二硫杂环戊烯-3-硫酮 5-氨基-3-硫代氧基-3H-(1,2)二硫杂环戊烯-4-羧酸乙酯 5-氨基-3-硫代氧基-3H-(1,2)二硫杂环戊烯-4-甲腈 5,6-二氢-4H-环戊并[1,2]二硫代-3-硫酮 4,4’,5-三甲基四硫富瓦烯 4-甲基二硫杂环戊烯-3-硫酮 4-新戊基-3H-1,2-二硫杂环戊烯-3-硫酮 4,5-二甲基-3H-1,2-二硫醇-3-酮 4,5,6,7-四氢苯并[1,2]二硫-3-硫酮 4,4’-二甲基连四硫富瓦烯 4,4,5,5,6,6,7,7-八氢二苯并四硫富瓦烯 3H-1,2-二硫杂环戊二烯-3-酮 3H-1,2-二硫杂环戊二烯-3-硫酮 2-(4,5-二甲基-1,3-二硫杂环戊烯-2-亚基)-4,5-二甲基-1,3-二硫杂环戊烯 2,3,6,7-四(2-氰乙基硫代)四硫富瓦烯 1,3-二噻唑,2-[4,5-二(癸基硫代)-1,3-二硫醇-2-亚基]-4,5-二(癸基硫代)- (四甲基硫)四硫富瓦烯 2,3,6,7-tetrakis[2-(2-methoxyethoxy)ethylsulfanyl]tetrathiafulvalene 2,3-bis[2-(2-methoxyethoxy)ethylsulfanyl]-6,7-bis(methylsulfanyl)tetrathiafulvalene (5S,6S,5'S,6'S)-5,5',6,6'-tetramethyl-bis(ethylenedithio)tetrathiafulvalene 2,5-bis(4,5-ethylenedithio-1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene 2,3,6,7-Tetrakis(1-octyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-dodecyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-pentyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-hexyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-propoxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-decyloxymethyl)tetrathiafulvalene 2,3,6,7-Tetrakis(1-heptyloxymethyl)tetrathiafulvalene 2,6-bis(thioacetopentadecylamido)-3,7-bis(methylthiotetrathiafulvalene) 2,7-bis(thioacetopentadecylamido)-3,6-bis(methylthiotetrathiafulvalene) ethane 1,2-dithiol 2,3,6,7-Tetrakis(1-tetradecyloxymethyl)tetrathiafulvalene 2-Isopropyliden-1,3-dithiol-4,5-dicarbonitril 4,5-bis(butylthio)tetrathiafulvalene 2,3-dicyano-6,7-bis(butylthio)tetrathiafulvalene Tetrabutylammonium-(3-thioxo-3H-1,2-dithiol-5-thiolat) 5,6-dihydro-5-dimethoxymethyl-2-(5',6'-dihydro-1,3-dithiolo[4,5-b]-1,4-dithiin-2'-ylidene)-1,3-dithiolo[4,5-b]-1,4-dithiin 3H-1,2-dithiole 2,2'-(But-2-en-1,4-diyliden)bis[1,3-dithiol-4,5-dicarbonitril] 3-methylsulfanyl-[1,2]dithiolylium; iodide 2,2'-(Dodeca-2,4,6,8,10-pentaen-1,12-diyliden)bis[1,3-dithiol-4,5-dicarbonitril] (E,E)-1,6-bis[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene]hexa-2,4-diene