摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-[(2,4,5-trimethylphenyl)ethynyl]phenol | 1191900-11-4

中文名称
——
中文别名
——
英文名称
4-[(2,4,5-trimethylphenyl)ethynyl]phenol
英文别名
4-[2-(2,4,5-Trimethylphenyl)ethynyl]phenol
4-[(2,4,5-trimethylphenyl)ethynyl]phenol化学式
CAS
1191900-11-4
化学式
C17H16O
mdl
——
分子量
236.313
InChiKey
WIULDEAWXFHWMA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.7
  • 重原子数:
    18
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.18
  • 拓扑面积:
    20.2
  • 氢给体数:
    1
  • 氢受体数:
    1

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    4-碘苯酚1-乙炔基-2,4,5-三甲基苯potassium phosphate 、 C28H47ClN4P2Pd 作用下, 以 1,4-二氧六环乙二醇 为溶剂, 反应 0.25h, 以90%的产率得到4-[(2,4,5-trimethylphenyl)ethynyl]phenol
    参考文献:
    名称:
    在无添加剂和无胺的条件下进行的基于氨基膦基钯的钳形配合物促进的高度便捷,清洁,快速和可靠的Sonogashira偶联反应
    摘要:
    Abstractmagnified imageSequential addition of 1,1′,1′′‐phosphinetriyltripiperidine and 1,3‐diaminobenzene or resorcinol to toluene solutions of (cyclooctadiene)palladium dichloride [Pd(cod)(Cl)2] under nitrogen in “one pot” almost quantitatively yielded the aminophosphine‐based pincer complexes {[C6H3‐2,6‐(XP{piperidinyl}2)2]Pd(Cl)} (X=NH 1; X=O 2). Complex 1 (and to a minor extent 2) proved to be efficient Sonogashira catalysts, which allow the quantitative coupling of various electronically deactivated and/or sterically hindered and functionalized aryl iodides and aryl bromides with several alkynes as coupling partners within very short reaction times and low catalyst loadings. Importantly, in contrast to most of the Sonogashira catalysts, which either are both air‐ and moisture‐sensitive and/or require the addition of co‐catalysts, such as copper(I) iodide [CuI], for example, or a large excess of an amine, the coupling reactions were carried out without the use of amines, co‐catalysts or other aditives and without exclusion of air and moisture. Moreover, the desired products were exclusively formed (no side‐products were detected) without employing an excess of one of the substrates. Ethylene glycol and potassium phosphate (K3PO4) were found to be the ideal solvent and base for this transformation. Experimental observations strongly indicate that palladium nanoparticles are not the catalytically active form of 1 and 2. On the other hand, their transformation into another homogeneous catalytically active species cannot be excluded.
    DOI:
    10.1002/adsc.200900112
点击查看最新优质反应信息

文献信息

  • Highly Convenient, Clean, Fast, and Reliable Sonogashira Coupling Reactions Promoted by Aminophosphine-Based Pincer Complexes of Palladium Performed under Additive- and Amine-Free Reaction Conditions
    作者:Jeanne L. Bolliger、Christian M. Frech
    DOI:10.1002/adsc.200900112
    日期:2009.4
    Abstractmagnified imageSequential addition of 1,1′,1′′‐phosphinetriyltripiperidine and 1,3‐diaminobenzene or resorcinol to toluene solutions of (cyclooctadiene)palladium dichloride [Pd(cod)(Cl)2] under nitrogen in “one pot” almost quantitatively yielded the aminophosphine‐based pincer complexes [C6H3‐2,6‐(XPpiperidinyl}2)2]Pd(Cl)} (X=NH 1; X=O 2). Complex 1 (and to a minor extent 2) proved to be efficient Sonogashira catalysts, which allow the quantitative coupling of various electronically deactivated and/or sterically hindered and functionalized aryl iodides and aryl bromides with several alkynes as coupling partners within very short reaction times and low catalyst loadings. Importantly, in contrast to most of the Sonogashira catalysts, which either are both air‐ and moisture‐sensitive and/or require the addition of co‐catalysts, such as copper(I) iodide [CuI], for example, or a large excess of an amine, the coupling reactions were carried out without the use of amines, co‐catalysts or other aditives and without exclusion of air and moisture. Moreover, the desired products were exclusively formed (no side‐products were detected) without employing an excess of one of the substrates. Ethylene glycol and potassium phosphate (K3PO4) were found to be the ideal solvent and base for this transformation. Experimental observations strongly indicate that palladium nanoparticles are not the catalytically active form of 1 and 2. On the other hand, their transformation into another homogeneous catalytically active species cannot be excluded.
查看更多