摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

S-(2-methoxy-9H-xanthen-9-yl)cysteine

中文名称
——
中文别名
——
英文名称
S-(2-methoxy-9H-xanthen-9-yl)cysteine
英文别名
(2R)-2-amino-3-[(2-methoxy-9H-xanthen-9-yl)sulfanyl]propanoic acid
S-(2-methoxy-9H-xanthen-9-yl)cysteine化学式
CAS
——
化学式
C17H17NO4S
mdl
——
分子量
331.392
InChiKey
YKMTUOCCNDWDRJ-KNVGNIICSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.1
  • 重原子数:
    23
  • 可旋转键数:
    5
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.24
  • 拓扑面积:
    107
  • 氢给体数:
    2
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    9-芴甲基-N-琥珀酰亚胺基碳酸酯S-(2-methoxy-9H-xanthen-9-yl)cysteine三乙胺 作用下, 以 乙腈 为溶剂, 反应 3.0h, 以83%的产率得到Nα-(9-fluorenylmethyloxycarbonyl)-S-(2-methoxy-9H-xanthen-9-yl)cysteine
    参考文献:
    名称:
    Novel S-Xanthenyl Protecting Groups for Cysteine and Their Applications for the Nα-9-Fluorenylmethyloxycarbonyl (Fmoc) Strategy of Peptide Synthesis1-3
    摘要:
    The 9H-xanthen-9-yl (Xan) and 2-methoxy-9H-xanthen-9-yl (2-Moxan) groups can be introduced onto sulfhydryl functions by S-alkylation reactions involving the corresponding xanthydrols, plus trifluoroacetic acid (TFA) as catalyst. Conversely, these groups are removed rapidly by acid in the presence of appropriate silane or thiol scavengers. The 3-methoxy-9H-xanthen-9-yl (3-Moxan) derivative was also studied, but abandoned for several reasons including challenging synthesis, excessive lability to acid, and insufficient stability in the presence of base. The N-alpha-9-fluorenyl-methyloxycarbonyl (Fmoc), S-Xan or 2-Moxan-protected cysteine derivatives were prepared and applied to the solid-phase syntheses of several model peptides. Selective removal of S-Xan and S-2-Moxan groups, while retaining tris(alkoxybenzyl)amide (PAL) anchoring, is best accomplished with TFA-CH2Cl2-Et3SiH (1:98.5:0.5), 25 degrees C, 2 h. Alternatively, oxidative deprotection of S-Xan or S-2-Moxan with iodine (10-20 equiv) or thallium(III) tris(trifluoroacetate) [Tl(tfa)(3)] (1-3 equiv) to provide disulfides can be carried out on peptide substrates both in solution and while polymer-bound. Compared to established chemistries with the acid-labile and oxidizable S-triphenylmethyl (Trt) group, S-Xan and S-2-Moxan gave equal or superior results in terms of peptide purities (including no detectable tryptophan alkylation) and overall yields.
    DOI:
    10.1021/jo961882g
  • 作为产物:
    描述:
    L-半胱氨酸2-Methoxyxanthydrol乙二醇二甲醚三氟乙酸 为溶剂, 反应 0.5h, 以97%的产率得到S-(2-methoxy-9H-xanthen-9-yl)cysteine
    参考文献:
    名称:
    Novel S-Xanthenyl Protecting Groups for Cysteine and Their Applications for the Nα-9-Fluorenylmethyloxycarbonyl (Fmoc) Strategy of Peptide Synthesis1-3
    摘要:
    The 9H-xanthen-9-yl (Xan) and 2-methoxy-9H-xanthen-9-yl (2-Moxan) groups can be introduced onto sulfhydryl functions by S-alkylation reactions involving the corresponding xanthydrols, plus trifluoroacetic acid (TFA) as catalyst. Conversely, these groups are removed rapidly by acid in the presence of appropriate silane or thiol scavengers. The 3-methoxy-9H-xanthen-9-yl (3-Moxan) derivative was also studied, but abandoned for several reasons including challenging synthesis, excessive lability to acid, and insufficient stability in the presence of base. The N-alpha-9-fluorenyl-methyloxycarbonyl (Fmoc), S-Xan or 2-Moxan-protected cysteine derivatives were prepared and applied to the solid-phase syntheses of several model peptides. Selective removal of S-Xan and S-2-Moxan groups, while retaining tris(alkoxybenzyl)amide (PAL) anchoring, is best accomplished with TFA-CH2Cl2-Et3SiH (1:98.5:0.5), 25 degrees C, 2 h. Alternatively, oxidative deprotection of S-Xan or S-2-Moxan with iodine (10-20 equiv) or thallium(III) tris(trifluoroacetate) [Tl(tfa)(3)] (1-3 equiv) to provide disulfides can be carried out on peptide substrates both in solution and while polymer-bound. Compared to established chemistries with the acid-labile and oxidizable S-triphenylmethyl (Trt) group, S-Xan and S-2-Moxan gave equal or superior results in terms of peptide purities (including no detectable tryptophan alkylation) and overall yields.
    DOI:
    10.1021/jo961882g
点击查看最新优质反应信息

文献信息

  • Novel <i>S</i>-Xanthenyl Protecting Groups for Cysteine and Their Applications for the <i>N</i><sup>α</sup>-9-Fluorenylmethyloxycarbonyl (Fmoc) Strategy of Peptide Synthesis<sup>1-3</sup>
    作者:Yongxin Han、George Barany
    DOI:10.1021/jo961882g
    日期:1997.6.13
    The 9H-xanthen-9-yl (Xan) and 2-methoxy-9H-xanthen-9-yl (2-Moxan) groups can be introduced onto sulfhydryl functions by S-alkylation reactions involving the corresponding xanthydrols, plus trifluoroacetic acid (TFA) as catalyst. Conversely, these groups are removed rapidly by acid in the presence of appropriate silane or thiol scavengers. The 3-methoxy-9H-xanthen-9-yl (3-Moxan) derivative was also studied, but abandoned for several reasons including challenging synthesis, excessive lability to acid, and insufficient stability in the presence of base. The N-alpha-9-fluorenyl-methyloxycarbonyl (Fmoc), S-Xan or 2-Moxan-protected cysteine derivatives were prepared and applied to the solid-phase syntheses of several model peptides. Selective removal of S-Xan and S-2-Moxan groups, while retaining tris(alkoxybenzyl)amide (PAL) anchoring, is best accomplished with TFA-CH2Cl2-Et3SiH (1:98.5:0.5), 25 degrees C, 2 h. Alternatively, oxidative deprotection of S-Xan or S-2-Moxan with iodine (10-20 equiv) or thallium(III) tris(trifluoroacetate) [Tl(tfa)(3)] (1-3 equiv) to provide disulfides can be carried out on peptide substrates both in solution and while polymer-bound. Compared to established chemistries with the acid-labile and oxidizable S-triphenylmethyl (Trt) group, S-Xan and S-2-Moxan gave equal or superior results in terms of peptide purities (including no detectable tryptophan alkylation) and overall yields.
查看更多