Synthesis and evaluation of arylpiperazine-reverse amides as biased dopamine D3 receptor ligands
摘要:
The dopamine D3 receptor (D3R) preferential ligands have been universally adopted as a strategy for the treatment of drug addiction and other neuropsychiatric disorders due to fewer side effects. However, the high sequence homology between D3R and the D2 receptor (D2R) challenges the development of D3R-biased compounds. Herein, we design and synthesize a novel series of reverse amide-piperazine hybrid ligands and evaluate their biological affinities in vitro. Compound 4d was found to be the most potent D3R-selective ligand among these hybrid derivatives. Molecular modeling revealed that extracellular loop 1 (EL1) and loop 2 (EL2) of D3R together likely contribute to D3R selectivity over D2R. In particular, Gly94 in EL1 of D3R may act as a molecular determinant for D3R specificity. (C) 2015 Elsevier Ltd. All rights reserved.
Synthesis and evaluation of arylpiperazine-reverse amides as biased dopamine D3 receptor ligands
摘要:
The dopamine D3 receptor (D3R) preferential ligands have been universally adopted as a strategy for the treatment of drug addiction and other neuropsychiatric disorders due to fewer side effects. However, the high sequence homology between D3R and the D2 receptor (D2R) challenges the development of D3R-biased compounds. Herein, we design and synthesize a novel series of reverse amide-piperazine hybrid ligands and evaluate their biological affinities in vitro. Compound 4d was found to be the most potent D3R-selective ligand among these hybrid derivatives. Molecular modeling revealed that extracellular loop 1 (EL1) and loop 2 (EL2) of D3R together likely contribute to D3R selectivity over D2R. In particular, Gly94 in EL1 of D3R may act as a molecular determinant for D3R specificity. (C) 2015 Elsevier Ltd. All rights reserved.
4-O esters of podophyllotoxin and 4′-demethylepipodophyllotoxin are provided. The compounds are 4-O esters of an alkanoic acid or substituted alkanoic acid and podophyllotoxin and 4′-demethylepipodophyllotoxin. The compounds are useful for treating cancer.
US8158809B2
申请人:——
公开号:US8158809B2
公开(公告)日:2012-04-17
Synthesis and evaluation of arylpiperazine-reverse amides as biased dopamine D3 receptor ligands
The dopamine D3 receptor (D3R) preferential ligands have been universally adopted as a strategy for the treatment of drug addiction and other neuropsychiatric disorders due to fewer side effects. However, the high sequence homology between D3R and the D2 receptor (D2R) challenges the development of D3R-biased compounds. Herein, we design and synthesize a novel series of reverse amide-piperazine hybrid ligands and evaluate their biological affinities in vitro. Compound 4d was found to be the most potent D3R-selective ligand among these hybrid derivatives. Molecular modeling revealed that extracellular loop 1 (EL1) and loop 2 (EL2) of D3R together likely contribute to D3R selectivity over D2R. In particular, Gly94 in EL1 of D3R may act as a molecular determinant for D3R specificity. (C) 2015 Elsevier Ltd. All rights reserved.