摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(2-氯乙基磺酰基)萘 | 90395-98-5

中文名称
2-(2-氯乙基磺酰基)萘
中文别名
——
英文名称
β-naphthyl 2-chloroethyl sulfone
英文别名
2-(2-chloroethylsulfonyl)naphthalene;NpSimO2;(2-chloro-ethyl)-[2]naphthyl sulfone;(2-Chlor-aethyl)-[2]naphthyl-sulfon;2-Chlor-1-(naphthyl-(2)-sulfon)-aethan;2-(Naphthyl-(2)-sulfon)-aethylchlorid;2-(2-Chlor-aethylsulfon)-naphthalin
2-(2-氯乙基磺酰基)萘化学式
CAS
90395-98-5
化学式
C12H11ClO2S
mdl
——
分子量
254.737
InChiKey
SPISLDLMSLGUEB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    16
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.17
  • 拓扑面积:
    42.5
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    (2-chloroethyl) (naphthalen-2-yl) sulfide 在 sodium perborate 、 溶剂黄146 作用下, 反应 3.0h, 以75%的产率得到2-(2-氯乙基磺酰基)萘
    参考文献:
    名称:
    Locus-Specific Microemulsion Catalysts for Sulfur Mustard (HD) Chemical Warfare Agent Decontamination
    摘要:
    The rates of catalytic oxidative decontamination of the chemical warfare agent (CWA) sulfur mustard (HD, bis(2-chlororethyl) sulfide) and a range (chloroethyl) sulfide simulants of variable lipophilicity have been examined using a hydrogen peroxide-based microemulsion system. SANS (small-angle neutron scattering), SAXS (small-angle X-ray scattering), PGSE-NMR (pulsed-gradient spin-echo NMR), fluorescence quenching, and electrospray mass spectroscopy (ESI-MS) were implemented to examine the distribution of HD, its simulants, and their oxidation/hydrolysis products in a model oil-in-water microemulsion. These measurements not only present a means of interpreting decontamination rates but also a rationale for the design of oxidation catalysts for these toxic materials. Here we show that by localizing manganese-Schiff base catalysts at the oil droplet-water interface or within the droplet core, a range of (chloroethyl) sulfides, including HD, spanning some 7 orders of octanol-water partition coefficient (K-ow), may be oxidized with equal efficacy using dilute (5 wt. % of aqueous phase) hydrogen peroxide as a noncorrosive, environmentally benign oxidant (e.g., t(1/2) (HD) similar to 18 s, (2-chloroethyl phenyl sulfide, C6H5SCH2CH2Cl) similar to 15 s, (thiodiglycol, S(CH2CH2OH)(2)) similar to 19 s {20 degrees C}). Our observations demonstrate that by programming catalyst lipophilicity to colocalize catalyst and substrate, the inherent compartmentalization of the microemulsion can be exploited to achieve enhanced rates of reaction or to exert control over product selectivity. A combination of SANS, ESI-MS and fluorescence quenching measurements indicate that the enhanced catalytic activity is due to the locus of the catalyst and not a result of partial hydrolysis of the substrate.
    DOI:
    10.1021/ja901872y
点击查看最新优质反应信息

文献信息

  • Abdel-Wahab, Aboel-Magd A.; El-Khawaga, Ahmed M.; El-Zohry, Maher F., Phosphorus and Sulfur and the Related Elements, 1984, vol. 19, p. 31 - 44
    作者:Abdel-Wahab, Aboel-Magd A.、El-Khawaga, Ahmed M.、El-Zohry, Maher F.、Khalaf, Ali A.
    DOI:——
    日期:——
  • 15. Monothioethylene glycol. Part IV. Aryl β-hydroxy- and β-chloro-ethyl sulphides
    作者:George Baddeley、G. Macdonald Bennett
    DOI:10.1039/jr9330000046
    日期:——
  • DE887505
    申请人:——
    公开号:——
    公开(公告)日:——
  • DE926965
    申请人:——
    公开号:——
    公开(公告)日:——
  • Locus-Specific Microemulsion Catalysts for Sulfur Mustard (HD) Chemical Warfare Agent Decontamination
    作者:Ian A. Fallis、Peter C. Griffiths、Terence Cosgrove、Cecile A. Dreiss、Norman Govan、Richard K. Heenan、Ian Holden、Robert L. Jenkins、Stephen J. Mitchell、Stuart Notman、Jamie A. Platts、James Riches、Thomas Tatchell
    DOI:10.1021/ja901872y
    日期:2009.7.22
    The rates of catalytic oxidative decontamination of the chemical warfare agent (CWA) sulfur mustard (HD, bis(2-chlororethyl) sulfide) and a range (chloroethyl) sulfide simulants of variable lipophilicity have been examined using a hydrogen peroxide-based microemulsion system. SANS (small-angle neutron scattering), SAXS (small-angle X-ray scattering), PGSE-NMR (pulsed-gradient spin-echo NMR), fluorescence quenching, and electrospray mass spectroscopy (ESI-MS) were implemented to examine the distribution of HD, its simulants, and their oxidation/hydrolysis products in a model oil-in-water microemulsion. These measurements not only present a means of interpreting decontamination rates but also a rationale for the design of oxidation catalysts for these toxic materials. Here we show that by localizing manganese-Schiff base catalysts at the oil droplet-water interface or within the droplet core, a range of (chloroethyl) sulfides, including HD, spanning some 7 orders of octanol-water partition coefficient (K-ow), may be oxidized with equal efficacy using dilute (5 wt. % of aqueous phase) hydrogen peroxide as a noncorrosive, environmentally benign oxidant (e.g., t(1/2) (HD) similar to 18 s, (2-chloroethyl phenyl sulfide, C6H5SCH2CH2Cl) similar to 15 s, (thiodiglycol, S(CH2CH2OH)(2)) similar to 19 s 20 degrees C}). Our observations demonstrate that by programming catalyst lipophilicity to colocalize catalyst and substrate, the inherent compartmentalization of the microemulsion can be exploited to achieve enhanced rates of reaction or to exert control over product selectivity. A combination of SANS, ESI-MS and fluorescence quenching measurements indicate that the enhanced catalytic activity is due to the locus of the catalyst and not a result of partial hydrolysis of the substrate.
查看更多