Enantioselective reduction of 4-chromanone and its derivatives by selected filamentous fungi
摘要:
Biotransformation of 4-chromanone and its derivatives in the cultures of three biocatalysts: Didymosphaeria igniaria, Colyneum betulinum and Chaetomium sp. is presented. The biocatalysts were chosen due to their capability of enantiospecific reduction of low-molecular-weight ketones (acetophenone and its derivatives and alpha- and beta-tetralone). The substrates were reduced to the respective S-alcohols with high enantiomeric excesses, according to the Prelog's rule. In the culture of Chaetomium sp. after longer biotransformation time an inversion of configuration of the formed alcohols was also observed. The highest yield of transformation was observed for 6-methyl-4-chromanone. In all the tested cultures, the higher was the molecular weight of a chromanone, the lower conversion percent was observed. (C) 2013 Elsevier B.V. All rights reserved.
A set of 28 enantiomers comprising rigid and flexible secondary alcohols was synthesized by the asymmetric Corey-Bakshi-Shibata reduction. The enantiomerically pure alcohols were subjected to enzymatic glucuronidation assays employing the human UDP-glucuronosyltransferases (UGTs) 2B7 and 2BI7. Both UGTs displayed high levels of stereo selectivity, favoring the conjugation of the (R)-enantiomers over their respective (S)-stereoisomers at eudismic ratios up to 256. The spatial arrangement of the hydroxy group determined the diastereoselectivity of the UGT2B17-catalyzed reaction in agreement with Pfeiffer's rule (eudismic activity quotient = 0.83 +/- 0.14). Inhibition studies revealed that the enantiomers had similar affinities toward the enzymes. The diastereoselectivity of the UGT-catalyzed conjugation stemmed, therefore, from the arrangement of the substrates in the catalytic site, rather than from distinct affinities toward the enzymes. Taken together, this study showed that metabolic enzymes that are generally conceived to be rather "flexible" in nature are capable of displaying high levels of chiral distinction.
Enantioselective reduction of 4-chromanone and its derivatives by selected filamentous fungi
Biotransformation of 4-chromanone and its derivatives in the cultures of three biocatalysts: Didymosphaeria igniaria, Colyneum betulinum and Chaetomium sp. is presented. The biocatalysts were chosen due to their capability of enantiospecific reduction of low-molecular-weight ketones (acetophenone and its derivatives and alpha- and beta-tetralone). The substrates were reduced to the respective S-alcohols with high enantiomeric excesses, according to the Prelog's rule. In the culture of Chaetomium sp. after longer biotransformation time an inversion of configuration of the formed alcohols was also observed. The highest yield of transformation was observed for 6-methyl-4-chromanone. In all the tested cultures, the higher was the molecular weight of a chromanone, the lower conversion percent was observed. (C) 2013 Elsevier B.V. All rights reserved.