Synthesis, Structure, and Neuroprotective Properties of Novel Imidazolyl Nitrones
摘要:
A new series of imidazolyl nitrones spin traps has been synthesized and evaluated pharmacologically. The salient structural feature of these molecules is the presence of an imidazole moiety substituted by aromatic or heteroaromatic cycles. This connectivity imparts to the nitrone superior neuroprotective properties in vivo and in parallel reduced side effects and toxicity. Thus compound 6a (a 2-phenylimidazolyl nitrone) administered intraperitoneally protects (80%) mice from lethality induced by an intracerebroventricular administration of tert-butyl hydroperoxide (t-BHP) an oxidant capable of inducing neurodegenerative processes. Administration of the archetypal nitrone phenyl-tert-butyl nitrone (PBN) at an equimolar dose also affords some protection (60%) in this test. However, this activity is accompanied by hypothermia, whereas no such effect is apparent for 6a. Moreover, previously prepared nonsubstituted or alkyl-substituted imidazolyl nitrones were shown to be extremely toxic to rats in contrast to the compounds prepared in this study. The observed activities in vivo correlate well with the calculated partition coefficients (ClogP) and HOMO energy level.
Synthesis, Structure, and Neuroprotective Properties of Novel Imidazolyl Nitrones
摘要:
A new series of imidazolyl nitrones spin traps has been synthesized and evaluated pharmacologically. The salient structural feature of these molecules is the presence of an imidazole moiety substituted by aromatic or heteroaromatic cycles. This connectivity imparts to the nitrone superior neuroprotective properties in vivo and in parallel reduced side effects and toxicity. Thus compound 6a (a 2-phenylimidazolyl nitrone) administered intraperitoneally protects (80%) mice from lethality induced by an intracerebroventricular administration of tert-butyl hydroperoxide (t-BHP) an oxidant capable of inducing neurodegenerative processes. Administration of the archetypal nitrone phenyl-tert-butyl nitrone (PBN) at an equimolar dose also affords some protection (60%) in this test. However, this activity is accompanied by hypothermia, whereas no such effect is apparent for 6a. Moreover, previously prepared nonsubstituted or alkyl-substituted imidazolyl nitrones were shown to be extremely toxic to rats in contrast to the compounds prepared in this study. The observed activities in vivo correlate well with the calculated partition coefficients (ClogP) and HOMO energy level.
3-Dimethylhydrazono-1,1,1-trifluoro-2-propanone as a Useful Synthetic Equivalent of Trifluoropyruvaldehyde — Application to Synthesis of Fluorine-containing Heterocycles
作者:Yasuhiro Kamitori
DOI:10.3987/com-03-9725
日期:——
3-Dimethylhydrazono-1,1,1-trifluoro-2-propanone (4) which is easily obtainable from formaldehyde dimethylhydrazone and trifluoroacetic anhydride was found to be an usuful synthetic equivalent of trifluoropyruvaldehyde for the synthesis of fluorine-containing heterocycles. With the use of 4, 4-trifluoromethylimidazoles and 2-trifluoromethylquinoxaline were successfully synthesized.
Synthesis, Structure, and Neuroprotective Properties of Novel Imidazolyl Nitrones
A new series of imidazolyl nitrones spin traps has been synthesized and evaluated pharmacologically. The salient structural feature of these molecules is the presence of an imidazole moiety substituted by aromatic or heteroaromatic cycles. This connectivity imparts to the nitrone superior neuroprotective properties in vivo and in parallel reduced side effects and toxicity. Thus compound 6a (a 2-phenylimidazolyl nitrone) administered intraperitoneally protects (80%) mice from lethality induced by an intracerebroventricular administration of tert-butyl hydroperoxide (t-BHP) an oxidant capable of inducing neurodegenerative processes. Administration of the archetypal nitrone phenyl-tert-butyl nitrone (PBN) at an equimolar dose also affords some protection (60%) in this test. However, this activity is accompanied by hypothermia, whereas no such effect is apparent for 6a. Moreover, previously prepared nonsubstituted or alkyl-substituted imidazolyl nitrones were shown to be extremely toxic to rats in contrast to the compounds prepared in this study. The observed activities in vivo correlate well with the calculated partition coefficients (ClogP) and HOMO energy level.
Discovery of novel 2-aryl-4-bis-amide imidazoles (ABAI) as anti-inflammatory agents for the treatment of inflammatory bowel diseases (IBD)