Improved synthesis of oligonucleotides with an allylic backbone. Oligonucleotides containing acyclic, achiral nucleoside analogues: N-1 or N-9-[3-hydroxy-2-(hydroxymethyl)prop-1-enyl]nucleobases
Improved synthesis of oligonucleotides with an allylic backbone. Oligonucleotides containing acyclic, achiral nucleoside analogues: N-1 or N-9-[3-hydroxy-2-(hydroxymethyl)prop-1-enyl]nucleobases
Improved synthesis of oligonucleotides with an allylic backbone. Oligonucleotides containing acyclic, achiral nucleoside analogues: N-1 or N-9-[3-hydroxy-2-(hydroxymethyl)prop-1-enyl]nucleobases
作者:Britta M. Dahl、Ulla Henriksen、Otto Dahl
DOI:10.1039/b517504f
日期:——
An improved phosphoramidite method is described to prepare oligonucleotides modified with the acyclic, achiral monomers 1. Examination of dimers, prepared on solid support or in solution, showed that phosphortriester dimers containing the allylic unit 1 were unstable towards bases, whereas phosphordiester dimers were stable. Phosphordiester dimers were obtained by replacing cyanoethyl phosphoramidites 2 with phosphoramidites 3, which gave phosphordiesters directly upon oxidation. The phosphordiester dimers were found to be stable towards capping and oxidation, but were somewhat labile towards acids. By reducing the contact time to acids during detritylation it was possible to prepare oligonucleotides containing 4 or 8 modified A, G or T units. The modified oligonucleotides hybridized to complementary DNA and RNA, although with reduced affinity (ΔTm per modification −1 to −5 °C).