An enantioselective nucleophilic substitution reaction of achiral dialkoxysilane has been developed. The reaction proceeds with efficient stereocontrol on the silicon chirality center to give the enantioenriched silyl ether, which can be converted to the silanol without loss of enantiopurity. We have analyzed the steric course of the reaction by using DFT calculations and propose a transition state model to explain the observed enantioselectivity.
Asymmetric Retro-[1,4] Brook Rearrangement and Its Stereochemical Course at Silicon